Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34947341

RESUMO

Soft magnetic materials are at the core of electromagnetic devices. Planar transformers are essential pieces of equipment working at high frequency. Usually, their magnetic core is made of various types of ferrites or iron-based alloys. An upcoming alternative might be the replacement the ferrites with FINEMET-type alloys, of nominal composition of Fe73.5Si13.5B9Cu3Nb1 (at. %). FINEMET is a nanocrystalline material exhibiting excellent magnetic properties at high frequencies, a soft magnetic alloy that has been in the focus of interest in the last years thanks to its high saturation magnetization, high permeability, and low core loss. Here, we present and discuss the measured and modelled properties of this material. Owing to the limits of the experimental set-up, an estimate of the total magnetic losses within this magnetic material is made, for values greater than the measurement limits of the magnetic flux density and frequency, with reasonable results for potential applications of FINMET-type alloys and thin films in high frequency planar transformer cores.

2.
Materials (Basel) ; 12(19)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569765

RESUMO

A soft magnetic MnZn-type ferrite is considered for high frequency applications. First, the morphological, structural, and chemical composition of the material are presented and discussed. Subsequently, by using a vibrating sample magnetometer (VSM), the hysteresis loops are recorded. The open magnetic circuit measurements are corrected by employing demagnetization factors, and by taking into consideration the local magnetic susceptibility. Finally, the hysteresis losses are estimated by the Steinmetz approach, and the results are compared with available commercial information provided by selected MnZn ferrite manufacturers. Such materials are representative in planar inductor and transformer cores due to their typically low losses at high frequency, i.e., up to several MHz, in low-to-medium power applications and providing high efficiency of up to 97%-99%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...