Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Genet Med ; 17(4): 253-261, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25412400

RESUMO

PURPOSE: Next-generation sequencing-based methods are being adopted broadly for genetic diagnostic testing, but the performance characteristics of these techniques with regard to test accuracy and reproducibility have not been fully defined. METHODS: We developed a targeted enrichment and next-generation sequencing approach for genetic diagnostic testing of patients with inherited eye disorders, including inherited retinal degenerations, optic atrophy, and glaucoma. In preparation for providing this genetic eye disease (GEDi) test on a CLIA-certified basis, we performed experiments to measure the sensitivity, specificity, and reproducibility, as well as the clinical sensitivity, of the test. RESULTS: The GEDi test is highly reproducible and accurate, with sensitivity and specificity of 97.9 and 100%, respectively, for single-nucleotide variant detection. The sensitivity for variant detection was notably better than the 88.3% achieved by whole-exome sequencing using the same metrics, because of better coverage of targeted genes in the GEDi test as compared with a commercially available exome capture set. Prospective testing of 192 patients with inherited retinal degenerations indicated that the clinical sensitivity of the GEDi test is high, with a diagnostic rate of 51%. CONCLUSION: Based on quantified performance metrics, the data suggest that selective targeted enrichment is preferable to whole-exome sequencing for genetic diagnostic testing.


Assuntos
Oftalmopatias/diagnóstico , Oftalmopatias/genética , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Exoma/genética , Oftalmopatias/patologia , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
Kidney Int ; 85(2): 383-92, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23760289

RESUMO

Mutations to PKD1 and PKD2 are associated with autosomal dominant polycystic kidney disease (ADPKD). The absence of apparent PKD1/PKD2 linkage in five published European or North American families with ADPKD suggested a third locus, designated PKD3. Here we re-evaluated these families by updating clinical information, re-sampling where possible, and mutation screening for PKD1/PKD2. In the French-Canadian family, we identified PKD1: p.D3782_V3783insD, with misdiagnoses in two individuals and sample contamination explaining the lack of linkage. In the Portuguese family, PKD1: p.G3818A segregated with the disease in 10 individuals in three generations with likely misdiagnosis in one individual, sample contamination, and use of distant microsatellite markers explaining the linkage discrepancy. The mutation PKD2: c.213delC was found in the Bulgarian family, with linkage failure attributed to false positive diagnoses in two individuals. An affected son, but not the mother, in the Italian family had the nonsense mutation PKD1: p.R4228X, which appeared de novo in the son, with simple cysts probably explaining the mother's phenotype. No likely mutation was found in the Spanish family, but the phenotype was atypical with kidney atrophy in one case. Thus, re-analysis does not support the existence of a PKD3 in ADPKD. False positive diagnoses by ultrasound in all resolved families shows the value of mutation screening, but not linkage, to understand families with discrepant data.


Assuntos
Loci Gênicos , Mutação , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética , Adolescente , Adulto , Idoso , Canadá , Criança , Análise Mutacional de DNA , Erros de Diagnóstico , Europa (Continente) , Reações Falso-Positivas , Feminino , Ligação Genética , Predisposição Genética para Doença , Testes Genéticos/métodos , Haplótipos , Hereditariedade , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Rim Policístico Autossômico Dominante/diagnóstico por imagem , Valor Preditivo dos Testes , Ultrassonografia , Adulto Jovem
3.
BMC Genomics ; 14: 486, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23865674

RESUMO

BACKGROUND: The retina is a complex tissue comprised of multiple cell types that is affected by a diverse set of diseases that are important causes of vision loss. Characterizing the transcripts, both annotated and novel, that are expressed in a given tissue has become vital for understanding the mechanisms underlying the pathology of disease. RESULTS: We sequenced RNA prepared from three normal human retinas and characterized the retinal transcriptome at an unprecedented level due to the increased depth of sampling provided by the RNA-seq approach. We used a non-redundant reference transcriptome from all of the empirically-determined human reference tracks to identify annotated and novel sequences expressed in the retina. We detected 79,915 novel alternative splicing events, including 29,887 novel exons, 21,757 3' and 5' alternate splice sites, and 28,271 exon skipping events. We also identified 116 potential novel genes. These data represent a significant addition to the annotated human transcriptome. For example, the novel exons detected increase the number of identified exons by 3%. Using a high-throughput RNA capture approach to validate 14,696 of these novel transcriptome features we found that 99% of the putative novel events can be reproducibly detected. Further, 15-36% of the novel splicing events maintain an open reading frame, suggesting they produce novel protein products. CONCLUSIONS: To our knowledge, this is the first application of RNA capture to perform large-scale validation of novel transcriptome features. In total, these analyses provide extensive detail about a previously uncharacterized level of transcript diversity in the human retina.


Assuntos
Processamento Alternativo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Retina/metabolismo , Transcriptoma , Adulto , Biologia Computacional/métodos , Proteínas de Ligação a DNA/genética , Feminino , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Anotação de Sequência Molecular , Proteínas de Neoplasias/genética , Especificidade de Órgãos/genética , Isoformas de RNA , Reprodutibilidade dos Testes
4.
Hum Mol Genet ; 20(13): 2524-34, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21493627

RESUMO

Meckel syndrome (MKS) is an embryonic lethal, autosomal recessive disorder characterized by polycystic kidney disease, central nervous system defects, polydactyly and liver fibrosis. This disorder is thought to be associated with defects in primary cilia; therefore, it is classed as a ciliopathy. To date, six genes have been commonly associated with MKS (MKS1, TMEM67, TMEM216, CEP290, CC2D2A and RPGRIP1L). However, mutation screening of these genes revealed two mutated alleles in only just over half of our MKS cohort (46 families), suggesting an even greater level of genetic heterogeneity. To explore the full genetic complexity of MKS, we performed exon-enriched next-generation sequencing of 31 ciliopathy genes in 12 MKS pedigrees using RainDance microdroplet-PCR enrichment and IlluminaGAIIx next-generation sequencing. In family M456, we detected a splice-donor site change in a novel MKS gene, B9D1. The B9D1 protein is structurally similar to MKS1 and has been shown to be of importance for ciliogenesis in Caenorhabditis elegans. Reverse transcriptase-PCR analysis of fetal RNA revealed, hemizygously, a single smaller mRNA product with a frameshifting exclusion of B9D1 exon 4. ArrayCGH showed that the second mutation was a 1.713 Mb de novo deletion completely deleting the B9D1 allele. Immunofluorescence analysis highlighted a significantly lower level of ciliated patient cells compared to controls, confirming a role for B9D1 in ciliogenesis. The fetus inherited an additional likely pathogenic novel missense change to a second MKS gene, CEP290; p.R2210C, suggesting oligogenic inheritance in this disorder.


Assuntos
Transtornos da Motilidade Ciliar/genética , Encefalocele/genética , Éxons/genética , Doenças Renais Policísticas/genética , Proteínas/genética , Deleção de Sequência/genética , Sequência de Aminoácidos , Sequência de Bases , Cílios/genética , Cílios/patologia , Transtornos da Motilidade Ciliar/metabolismo , Transtornos da Motilidade Ciliar/patologia , Proteínas do Citoesqueleto , Encefalocele/metabolismo , Encefalocele/patologia , Feminino , Feto , Fibroblastos/metabolismo , Ordem dos Genes , Humanos , Espaço Intracelular/metabolismo , Masculino , Dados de Sequência Molecular , Mutação de Sentido Incorreto/genética , Linhagem , Fenótipo , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/patologia , Polimorfismo de Nucleotídeo Único/genética , Transporte Proteico/genética , Retinose Pigmentar , Alinhamento de Sequência
5.
Ophthalmology ; 118(6): 1137-44, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21236492

RESUMO

PURPOSE: To describe a novel laminin ß-2 (LAMB2) mutation associated with nephrotic syndrome and severe retinal disease without microcoria in a large, multigenerational family with Pierson syndrome. DESIGN: Retrospective chart review and prospective family examination. PARTICIPANTS: An extended consanguineous family of 52 members. METHODS: The eyes, urine, and serum DNA were evaluated in all family members after discovering 2 patients, both younger than 10 years, with bilateral retinal detachments and concurrent renal dysfunction. Linkage analysis was performed in the 9 living affected individuals, 7 using the Illumina Human Hap370 Duo Bead Array (Illumina, San Diego, CA) and 2 using GeneChip 10K (Affymetrix, Santa Clara, CA) mapping arrays. MAIN OUTCOME MEASURES: The prevalence and severity of ocular and kidney involvement and genetic findings. RESULTS: Eleven affected family members were identified (9 living), all manifesting chronic kidney disease and bilateral chorioretinal pigmentary changes, with or without retinal detachments, but without microcoria or neurodevelopmental deficits, segregating in an autosomal recessive pattern. The causative gene was localized to a 9-Mb region on chromosome 3. Comprehensive gene sequencing revealed a novel LAMB2 variant (c.440A → G; His147R) that was homozygous in the 9 living, affected family members, observed at a frequency of 2.1% in the Old Order Mennonite population, and absent in 91 non-Mennonite controls. The mutation is located in a highly conserved site in the N-terminal domain VI of LAMB2. CONCLUSIONS: This study describes a novel mutation of LAMB2 and further expands the spectrum of eye and renal manifestations associated with defects in the laminin ß-2 chain. FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article.


Assuntos
DNA/genética , Predisposição Genética para Doença , Laminina/genética , Mutação de Sentido Incorreto , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Cromossomos Humanos Par 3 , DNA/metabolismo , Análise Mutacional de DNA , Anormalidades do Olho/genética , Anormalidades do Olho/metabolismo , Feminino , Seguimentos , Humanos , Lactente , Laminina/metabolismo , Masculino , Pessoa de Meia-Idade , Síndromes Miastênicas Congênitas , Síndrome Nefrótica , Linhagem , Fenótipo , Distúrbios Pupilares/genética , Distúrbios Pupilares/metabolismo , Estudos Retrospectivos , Adulto Jovem
6.
Kidney Int ; 75(8): 848-55, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19165178

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) caused by mutations in PKD1 is significantly more severe than PKD2. Typically, ADPKD presents in adulthood but is rarely diagnosed in utero with enlarged, echogenic kidneys. Somatic mutations are thought crucial for cyst development, but gene dosage is also important since animal models with hypomorphic alleles develop cysts, but are viable as homozygotes. We screened for mutations in PKD1 and PKD2 in two consanguineous families and found PKD1 missense variants predicted to be pathogenic. In one family, two siblings homozygous for R3277C developed end stage renal disease at ages 75 and 62 years, while six heterozygotes had few cysts. In the other family, the father and two children with moderate to severe disease were homozygous for N3188S. In both families homozygous disease was associated with small cysts of relatively uniform size while marked cyst heterogeneity is typical of ADPKD. In another family, one patient diagnosed in childhood was found to be a compound heterozygote for the PKD1 variants R3105W and R2765C. All three families had evidence of developmental defects of the collecting system. Three additional ADPKD families with in utero onset had a truncating mutation in trans with either R3277C or R2765C. These cases suggest the presence of incompletely penetrant PKD1 alleles. The alleles alone may result in mild cystic disease; two such alleles cause typical to severe disease; and, in combination with an inactivating allele, are associated with early onset disease. Our study indicates that the dosage of functional PKD1 protein may be critical for cyst initiation.


Assuntos
Alelos , Dosagem de Genes , Penetrância , Canais de Cátion TRPP/genética , Cistos/genética , Análise Mutacional de DNA , Saúde da Família , Genótipo , Humanos , Falência Renal Crônica , Mutação de Sentido Incorreto , Linhagem
7.
Kidney Int ; 74(11): 1468-79, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18818683

RESUMO

Large DNA rearrangements account for about 8% of disease mutations and are more common in duplicated genomic regions, where they are difficult to detect. Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in either PKD1 or PKD2. PKD1 is located in an intrachromosomally duplicated region. A tuberous sclerosis gene, TSC2, lies immediately adjacent to PKD1 and large deletions can result in the PKD1/TSC2 contiguous gene deletion syndrome. To rapidly identify large rearrangements, a multiplex ligation-dependent probe amplification assay was developed employing base-pair differences between PKD1 and the six pseudogenes to generate PKD1-specific probes. All changes in a set of 25 previously defined deletions in PKD1, PKD2 and PKD1/TSC2 were detected by this assay and we also found 14 new mutations at these loci. About 4% of the ADPKD patients in the CRISP study were found to have gross rearrangements, and these accounted for about a third of base-pair mutation negative families. Sensitivity of the assay showed that about 40% of PKD1/TSC contiguous gene deletion syndrome families contained mosaic cases. Characterization of a family found to be mosaic for a PKD1 deletion is discussed here to illustrate family risk and donor selection considerations. Our assay improves detection levels and the reliability of molecular testing of patients with ADPKD.


Assuntos
Rearranjo Gênico , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética , Proteínas Supressoras de Tumor/genética , Análise Mutacional de DNA/métodos , Análise Mutacional de DNA/normas , Saúde da Família , Feminino , Deleção de Genes , Humanos , Masculino , Mutação , Linhagem , Rim Policístico Autossômico Dominante/diagnóstico , Proteína 2 do Complexo Esclerose Tuberosa
8.
J Am Soc Nephrol ; 18(7): 2143-60, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17582161

RESUMO

Mutation-based molecular diagnostics of autosomal dominant polycystic kidney disease (ADPKD) is complicated by genetic and allelic heterogeneity, large multi-exon genes, duplication of PKD1, and a high level of unclassified variants (UCV). Present mutation detection levels are 60 to 70%, and PKD1 and PKD2 UCV have not been systematically classified. This study analyzed the uniquely characterized Consortium for Radiologic Imaging Study of PKD (CRISP) ADPKD population by molecular analysis. A cohort of 202 probands was screened by denaturing HPLC, followed by direct sequencing using a clinical test of 121 with no definite mutation (plus controls). A subset was also screened for larger deletions, and reverse transcription-PCR was used to test abnormal splicing. Definite mutations were identified in 127 (62.9%) probands, and all UCV were assessed for their potential pathogenicity. The Grantham Matrix Score was used to score the significance of the substitution and the conservation of the residue in orthologs and defined domains. The likelihood for aberrant splicing and contextual information about the UCV within the patient (including segregation analysis) was used in combination to define a variant score. From this analysis, 44 missense plus two atypical splicing and seven small in-frame changes were defined as probably pathogenic and assigned to a mutation group. Mutations were thus defined in 180 (89.1%) probands: 153 (85.0%) PKD1 and 27 (15.0%) PKD2. The majority were unique to a single family, but recurrent mutations accounted for 30.0% of the total. A total of 190 polymorphic variants were identified in PKD1 (average of 10.1 per patient) and eight in PKD2. Although nondefinite mutation data must be treated with care in the clinical setting, this study shows the potential for molecular diagnostics in ADPKD that is likely to become increasingly important as therapies become available.


Assuntos
Mutação , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/genética , Adolescente , Adulto , Humanos , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular , Análise de Sequência de DNA
9.
Hum Genet ; 121(5): 591-9, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17377820

RESUMO

Meckel-Gruber syndrome (MKS) is a recessively inherited, lethal disorder characterized by renal cystic dysplasia, occipital encephalocele, polydactyly and biliary dysgenesis. MKS is genetically heterogeneous with three loci mapped and two identified; MKS1 (17q23) and MKS3 (8q22.1). MKS1 is part of the Finnish disease heritage, while MKS3 has been described exclusively in consanguineous Asian families. Here we aimed to establish molecular diagnostics for MKS, determine the importance of MKS1 and MKS3 in non-consanguineous populations, and study genotype/phenotype correlations. The coding regions of MKS1 and MKS3 were screened for mutations by direct sequencing in 17 families clinically diagnosed with MKS in the US or The Netherlands. The clinical phenotype was compared to genic and allelic effects. Both mutations were identified in ten families; five MKS1 and five MKS3. All but two were compound heterozygotes, consistent with their non-consanguineous nature. The MKS1-Fin(major) mutation accounted for 7/10 MKS1 mutations; two novel changes were additionally detected. Seven novel mutations were found in MKS3, including three missense changes. We concluded that MKS1 and MKS3 account for the majority of MKS in non-consanguineous populations of European origin. Polydactyly is usually found in MKS1 but rare in MKS3. Cases with no, or milder, CNS phenotypes were only found in MKS3; hypomorphic missense mutations may be associated with less severe CNS outcomes. This study is consistent with further genetic heterogeneity of MKS, but underlines the value of molecular diagnostics of the known genes to aid family planning decisions.


Assuntos
Anormalidades Múltiplas/genética , Doenças do Sistema Nervoso Central/genética , Proteínas de Membrana/genética , Proteínas/genética , Doenças do Sistema Nervoso Central/patologia , Heterogeneidade Genética , Rim/patologia , Fígado/patologia , Síndrome
10.
J Am Soc Nephrol ; 17(4): 1015-25, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16565258

RESUMO

A "two-hit" hypothesis predicts a second somatic hit, in addition to the germline mutation, as a prerequisite to cystogenesis and has been proposed to explain the focal nature for renal cyst formation in autosomal dominant polycystic kidney disease (ADPKD). It was reported previously that Pkd1(null/null) mouse kidney epithelial cells are unresponsive to flow stimulation. This report shows that Pkd1(+/null) cells are capable of responding to mechanical flow stimulation by changing their intracellular calcium concentration in a manner similar to that of wild-type cells. This paper reports that human renal epithelia require a higher level of shear stress to evoke a cytosolic calcium increase than do mouse renal epithelia. Both immortalized and primary cultured renal epithelial cells that originate from normal and nondilated ADPKD human kidney tubules display normal ciliary expression of the polycystins and respond to fluid-flow shear stress with the typical change in cytosolic calcium. In contrast, immortalized and primary cultured cyst-lining epithelial cells from ADPKD patients with mutations in PKD1 or with abnormal ciliary expression of polycystin-1 or -2 were not responsive to fluid shear stress. These data support a two-hit hypothesis as a mechanism of cystogenesis. This report proposes that calcium response to fluid-flow shear stress can be used as a readout of polycystin function and that loss of mechanosensation in the renal tubular epithelia is a feature of PKD cysts.


Assuntos
Cílios/fisiologia , Rim Policístico Autossômico Dominante/fisiopatologia , Canais de Cátion TRPP/metabolismo , Animais , Sequência de Bases , Cálcio/metabolismo , Cílios/patologia , DNA/genética , Epitélio/fisiopatologia , Humanos , Mecanotransdução Celular/genética , Mecanotransdução Celular/fisiologia , Camundongos , Modelos Biológicos , Mutação , Rim Policístico Autossômico Dominante/etiologia , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia
11.
Medicine (Baltimore) ; 85(1): 1-21, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16523049

RESUMO

The autosomal recessive form of polycystic kidney disease (ARPKD) is generally considered an infantile disorder with the typical presentation of greatly enlarged echogenic kidneys detected in utero or within the neonatal period, often resulting in neonatal demise. However, there is an increasing realization that survivors often thrive into adulthood with complications of the ductal plate malformation, manifesting as congenital hepatic fibrosis and Caroli disease, becoming prominent. Previous natural history studies have concentrated almost exclusively on the infantile presenting group. However, developments in understanding the genetic basis of ARPKD, through identification of the disease gene, PKHD1, have allowed exploration of the etiology in patients with ARPKD-like disease or congenital hepatic fibrosis presenting later in childhood or as adults. In the current study we retrospectively reviewed the clinical records, and where possible performed PKHD1 mutation screening, in patients diagnosed with ARPKD or congenital hepatic fibrosis at the Mayo Clinic, Rochester, MN, from 1961 to 2004. Of a total of 133 cases reviewed, 65 were considered to meet the diagnostic criteria with an average duration of follow-up of 8.6 +/- 6.4 years. Fifty-five cases had ARPKD and 10 had isolated congenital hepatic fibrosis with no or minimal renal involvement. The patients were analyzed as 3 groups categorized by the age at diagnosis; <1 years (n = 22), 1-20 years (n = 23), and >20 years (n = 20). The presenting feature in the neonates was typically associated with renal enlargement, but in the older groups, more often involved manifestations of liver disease, including hepatosplenomegaly, hypersplenism, variceal bleeding, and cholangitis. During follow-up, 22 patients had renal insufficiency and 8 developed end-stage renal disease (ESRD), most from the neonatal group. Liver disease was evident on follow-up in all diagnostic groups but particularly prevalent in those diagnosed later in life. A total of 12 patients died, 6 in the neonatal period, but 86% of patients were alive at 40 years of age. The likelihood of being alive without ESRD differed significantly between the diagnostic groups with 36%, 80%, and 88% survival in the 3 diagnostic groups, respectively, 20 years after the diagnosis. Considerable evidence of intrafamilial phenotype variability was observed. Mutation analysis was performed in 31 families and at least 1 mutation was detected in 25 (81%), with 76% of mutant alleles detected in those cases. Consistent with the relatively mild disease manifestations in this population, the majority of changes were missense (79%) and no case had 2 truncating changes. Mutations were detected in all diagnostic groups, indicating that congenital hepatic fibrosis with minimal kidney involvement can result from PKHD1 mutation. The finding of 6 cases with no detected mutations may represent missed mutations or possible evidence of genetic heterogeneity. The current study indicates a broadened spectrum for the ARPKD phenotype and that later presenting cases with predominant liver disease should be considered part of ARPKD.


Assuntos
Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/patologia , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Lactente , Recém-Nascido , Falência Renal Crônica/etiologia , Masculino , Mutação de Sentido Incorreto , Fenótipo , Prognóstico , Receptores de Superfície Celular/genética , Estudos Retrospectivos , Índice de Gravidade de Doença
12.
Chem Commun (Camb) ; (45): 5644-6, 2005 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-16292376

RESUMO

Treatment of mononuclear nonheme iron(II) complexes bearing two cis-labile sites with perbenzoic acids results in the self-hydroxylation of the aromatic ring to form the corresponding iron(III)-salicylate complexes through an intramolecular oxo-transfer process.


Assuntos
Benzoatos/química , Ferro/química , Heme/química , Hidroxilação , Modelos Moleculares , Estrutura Molecular , Oxirredução
13.
Am J Kidney Dis ; 45(1): 77-87, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15696446

RESUMO

BACKGROUND: Autosomal recessive polycystic kidney disease (ARPKD) is characterized by wide phenotypic variability, ranging from in utero detection with enlarged, echogenic kidneys to an adult presentation with congenital hepatic fibrosis. The ARPKD gene, PKHD1 , covers about 470 kb of DNA (67 exons), and mutation studies have found marked allelic heterogeneity with a high level of novel missense changes and neutral polymorphisms. To improve the prospects for molecular diagnostics and to study the origin of some relatively common mutations, the authors have developed a strategy for improved ARPKD haplotyping. METHODS: A protocol of multiplex PCR and fluorescence genotyping in a single capillary has been developed to assay 7 highly informative simple sequence repeat (SSR) markers that are intragenic or closely flanking PKHD1. RESULTS: Examples in which haplotype analysis, used in combination with mutation screening, improved the utility of molecular diagnostics, especially in families in which just a single PKHD1 mutation has been identified, are illustrated. The new markers also allow screening for larger DNA deletions, detecting unknown consanguinity and exploring the disease mechanism. Analysis of 8 recurring mutations has shown likely common haplotypes for each, and the divergence from the ancestral haplotype, by recombination, can be used to trace the history of the mutation. The common mutation, T36M, was found to have a single European origin, about 1,225 years ago. CONCLUSION: Improved haplotype analysis of ARPKD complements mutation-based diagnostics and helps trace the history of common PKHD1 mutations.


Assuntos
Haplótipos/genética , Técnicas de Diagnóstico Molecular/métodos , Rim Policístico Autossômico Recessivo/diagnóstico , Região 3'-Flanqueadora/genética , Região 5'-Flanqueadora/genética , Adolescente , Adulto , Criança , Estudos de Coortes , DNA Intergênico/genética , Feminino , Marcadores Genéticos/genética , Genótipo , Humanos , Masculino , Repetições de Microssatélites/genética , Mutação/genética , Rim Policístico Autossômico Recessivo/genética , Reação em Cadeia da Polimerase/métodos , Receptores de Superfície Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...