Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 102021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34826292

RESUMO

Transcranial random noise stimulation (tRNS) can enhance vision in the healthy and diseased brain. Yet, the impact of multi-day tRNS on large-scale cortical networks is still unknown. We investigated the impact of tRNS coupled with behavioral training on resting-state functional connectivity and attention. We trained human subjects for 4 consecutive days on two attention tasks, while receiving tRNS over the intraparietal sulci, the middle temporal areas, or Sham stimulation. We measured resting-state functional connectivity of nodes of the dorsal and ventral attention network (DVAN) before and after training. We found a strong behavioral improvement and increased connectivity within the DVAN after parietal stimulation only. Crucially, behavioral improvement positively correlated with connectivity measures. We conclude changes in connectivity are a marker for the enduring effect of tRNS upon behavior. Our results suggest that tRNS has strong potential to augment cognitive capacity in healthy individuals and promote recovery in the neurological population.


Assuntos
Atenção/fisiologia , Lobo Parietal/fisiologia , Lobo Temporal/fisiologia , Estimulação Transcraniana por Corrente Contínua , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
2.
Cortex ; 132: 1-14, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32911230

RESUMO

Existing theories of visual search are generally deduced from lab-based studies involving the identification of a target object among similar distractors. The role of the right parietal cortex in visual search is well-established. However, less is known about real-world visual search tasks, such as X-ray screening, which require targets to be disembedded from their background. Research has shown variations in the cognitive abilities required for these tasks and typical lab-based visual search tasks. Thus, the findings of traditional visual search studies do not always transfer into the applied domain. Although brain imaging studies have offered insights into visual search tasks involving disembedding, highlighting an association between the left parietal cortex and disembedding performance, no causal link has yet been established. To this end, we carried out a pilot study (n = 34, between-subjects) administering non-invasive brain stimulation over the posterior parietal cortex (PPC) prior to completing a security X-ray screening task. The findings suggested that anodal left PPC tDCS enhanced novice performance in X-ray screening over that of sham stimulation, in line with brain imaging findings. However, the efficacy of tDCS is under question, with a growing number of failed replications. With this in mind, this study aims to re-test our original hypothesis by examining the effects of left-side parietal stimulation on novice X-ray screener performance and comparing them to those of sham stimulation and of stimulation on a control site (right PPC). As such, this within-subjects study comprised three sessions (2 mA left PPC, 2 mA right PPC, low-intensity sham stimulation left PPC), to investigate effects of anodal tDCS on X-ray screening performance. The pre-registered analysis did not detect any significant differences between left PPC tDCS and sham tDCS or left PPC tDCS and right PPC tDCS on novice performance (d') in X-ray screening. Further exploratory analyses detected no effects of left PPC tDCS on any other indices of performance in the X-ray security screening task (c, RTs and accuracy), or a disembedding control task (RTs and accuracy). The use of alternative stimulation techniques, with replicable behavioural effects on the parietal lobe (or a multi-technique approach), and well-powered studies with a systematic variation of stimulation parameters, could help to choose between two possible interpretations: that neither left nor right PPC are causally related to either tasks or that tDCS was ineffective. Finally, low-intensity sham stimulation (.016 mA), previously shown to outperform other sham conditions in between-subjects designs, was found to be ineffective for blinding participants in a within-subjects design. Our findings raise concerns for the current lack of optimal control conditions and add to the growing literature highlighting the need for replication in the field.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Lobo Parietal/diagnóstico por imagem , Projetos Piloto , Raios X
3.
Cereb Cortex Commun ; 1(1): tgaa069, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34296130

RESUMO

Sustained attention is a limited resource which declines during daily tasks. Such decay is exacerbated in clinical and aging populations. Inhibition of the intraparietal sulcus (IPS), using low-frequency repetitive transcranial magnetic stimulation (LF-rTMS), can lead to an upregulation of functional communication within the attention network. Attributed to functional compensation for the inhibited node, this boost lasts for tens of minutes poststimulation. Despite the neural change, no behavioral correlate has been found in healthy subjects, a necessary direct evidence of functional compensation. To understand the functional significance of neuromodulatory induced fluctuations on attention, we sought to boost the impact of LF-rTMS to impact behavior. We controlled brain state prior to LF-rTMS using high-frequency transcranial random noise stimulation (HF-tRNS), shown to increase and stabilize neuronal excitability. Using fMRI-guided stimulation protocols combining HF-tRNS and LF-rTMS, we tested the poststimulation impact on sustained attention with multiple object tracking (MOT). While attention deteriorated across time in control conditions, HF-tRNS followed by LF-rTMS doubled sustained attention capacity to 94 min. Multimethod stimulation was more effective when targeting right IPS, supporting specialized attention processing in the right hemisphere. Used in cognitive domains dependent on network-wide neural activity, this tool may cause lasting neural compensation useful for clinical rehabilitation.

4.
Front Psychol ; 10: 529, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915006

RESUMO

Non-invasive brain stimulation safely induces persistent large-scale neural modulation in functionally connected brain circuits. Interruption models of repetitive transcranial magnetic stimulation (rTMS) capitalize on the acute impact of brain stimulation, which decays over minutes. However, rTMS also induces longer-lasting impact on cortical functions, evident by the use of multi-session rTMS in clinical population for therapeutic purposes. Defining the persistent cortical dynamics induced by rTMS is complicated by the complex balance of excitation and inhibition among functionally connected networks. Nonetheless, it is these neuronal dynamic responses that are essential for the development of new neuromodulatory protocols for translational applications. We will review evidence of prolonged changes of cortical response, tens of minutes following one session of low frequency rTMS over the cortex. We will focus on the different methods which resulted in prolonged behavioral and brain changes, such as the combination of brain stimulation techniques, and individually tailored stimulation protocols. We will also highlight studies which apply these methods in multi-session stimulation practices to extend stimulation impact into weeks and months. Our data and others' indicate that delayed cortical dynamics may persist much longer than previously thought and have potential as an extended temporal window during which cortical plasticity may be enhanced.

5.
Neuropsychologia ; 119: 165-171, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30107155

RESUMO

BACKGROUND: Transcranial random noise stimulation (tRNS) can cause long term increase of corticospinal excitability when used to prime the motor cortex, before measuring the motor response in the hand muscles with TMS (Terney et al., 2008). In cognitive studies, tRNS has been used to improve visual attention and mathematical skills, an enhancement effect that might suggest sustained cortical plasticity changes (Cappelletti et al., 2013; Snowball et al., 2013). However, while the behavioral evidence of increased performance is becoming substantiated by empirical data, it still remains unclear whether tRNS over visual areas causes an increase in cortical excitability similar to what has been found in the motor cortex, and if that increase could be a potential physiological explanation for behavioral improvements found in visual tasks. OBJECTIVE/HYPOTHESIS: In the present study, we aimed to investigate whether priming the visual cortex with tRNS leads to increased and sustained excitability as measured with visual phosphenes. METHODS: We measured phosphene thresholds (PTs) using an objective staircase method to quantify the magnitude of cortical excitability changes. Single-pulse TMS was used to elicit phosphenes before, immediately after, and every 10 min up to one hour after the end of 20 min tRNS, anodal tDCS (a-tDCS) or sham. RESULTS: Results showed that phosphene thresholds were significantly reduced up to 60 min post stimulation relative to baseline after tRNS, a behavioral marker of increased excitability of the visual cortex, while a-tDCS had no effect. This result is very similar in magnitude and duration to what has been found in the motor cortex. CONCLUSIONS: Our findings demonstrate promising potential of tRNS as a tool to increase and sustain cortical excitability to promote improvement of cognitive functions.


Assuntos
Fosfenos/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Córtex Visual/fisiologia , Feminino , Humanos , Masculino , Método Simples-Cego , Adulto Jovem
6.
J Cogn Neurosci ; 30(5): 656-666, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29324073

RESUMO

This study explored the modulatory effects of high-frequency transcranial random noise stimulation (tRNS) on visual sensitivity during a temporal attention task. We measured sensitivity to different onset asynchronies during a temporal order judgment task as a function of active stimulation relative to sham. While completing the task, participants were stimulated bilaterally for 20 min over either the TPJ or the human middle temporal area. We hypothesized that tRNS over the TPJ, which is critical to the temporal attention network, would selectively increase cortical excitability and induce cognitive training-like effects on performance, perhaps more so in the left visual field [Matthews, N., & Welch, L. Left visual field attentional advantage in judging simultaneity and temporal order. Journal of Vision, 15, 1-13, 2015; Romanska, A., Rezlescu, C., Susilo, T., Duchaine, B., & Banissy, M. J. High-frequency transcranial random noise stimulation enhances perception of facial identity. Cerebral Cortex, 25, 4334-4340, 2015]. In Experiment 1, we measured the performance of participants who judged the order of Gabors temporally imbedded in flickering discs, presented with onset asynchronies ranging from -75 msec (left disc first) to +75 msec (right disc first). In Experiment 2, we measured whether each participant's temporal sensitivity increased with stimulation by using temporal offsets that the participant initially perceived as simultaneous. We found that parietal cortex stimulation temporarily increased sensitivity on the temporal order judgment task, especially in the left visual field. Stimulation over human middle temporal area did not alter cortical excitability in a way that affected performance. The effects were cumulative across blocks of trials for tRNS over parietal cortex but dissipated when stimulation ended. We conclude that single-session tRNS can induce temporary improvements in behavioral sensitivity and that this shows promising insight into the relationship between cortical stimulation and neural plasticity.


Assuntos
Atenção/fisiologia , Discriminação Psicológica/fisiologia , Lobo Parietal/fisiologia , Lobo Temporal/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Comportamento de Escolha , Reconhecimento Facial/fisiologia , Feminino , Humanos , Julgamento , Masculino , Estimulação Transcraniana por Corrente Contínua , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...