Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Vaccines (Basel) ; 11(2)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36851237

RESUMO

Sphingomyelin is a major constituent of eukaryotic cell membranes, and if degraded by bacteria sphingomyelinases may contribute to the pathogenesis of infection. Among Leptospira spp., there are five sphingomyelinases exclusively expressed by pathogenic leptospires, in which Sph2 is expressed during natural infections, cytotoxic, and implicated in the leptospirosis hemorrhagic complications. Considering this and the lack of information about associations between Sph2 and leptospirosis severity, we use a combination of immunoinformatics approaches to identify its B-cell epitopes, evaluate their reactivity against samples from leptospirosis patients, and investigate the role of antibodies anti-Sph2 in protection against severe leptospirosis. Two B-cell epitopes, Sph2(176-191) and Sph2(446-459), were predicted in Sph2 from L. interrogans serovar Lai, presenting different levels of identity when compared with other pathogenic leptospires. These epitopes were recognized by about 40% of studied patients with a prevalence of IgG antibodies against both Sph2(176-191) and Sph2(446-459). Remarkably, just individuals with low reactivity to Sph2(176-191) presented clinical complications, while high responders had only mild symptoms. Therefore, we identified two B-cell linear epitopes, recognized by antibodies of patients with leptospirosis, that could be further explored in the development of multi-epitope vaccines against leptospirosis.

2.
Vaccines, v. 11, n. 2, 359, fev. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4807

RESUMO

Sphingomyelin is a major constituent of eukaryotic cell membranes, and if degraded by bacteria sphingomyelinases may contribute to the pathogenesis of infection. Among Leptospira spp., there are five sphingomyelinases exclusively expressed by pathogenic leptospires, in which Sph2 is expressed during natural infections, cytotoxic, and implicated in the leptospirosis hemorrhagic complications. Considering this and the lack of information about associations between Sph2 and leptospirosis severity, we use a combination of immunoinformatics approaches to identify its B-cell epitopes, evaluate their reactivity against samples from leptospirosis patients, and investigate the role of antibodies anti-Sph2 in protection against severe leptospirosis. Two B-cell epitopes, Sph2(176-191) and Sph2(446-459), were predicted in Sph2 from L. interrogans serovar Lai, presenting different levels of identity when compared with other pathogenic leptospires. These epitopes were recognized by about 40% of studied patients with a prevalence of IgG antibodies against both Sph2(176-191) and Sph2(446-459). Remarkably, just individuals with low reactivity to Sph2(176-191) presented clinical complications, while high responders had only mild symptoms. Therefore, we identified two B-cell linear epitopes, recognized by antibodies of patients with leptospirosis, that could be further explored in the development of multi-epitope vaccines against leptospirosis.

3.
Front Cell Infect Microbiol ; 12: 966370, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081769

RESUMO

Extracellular proteolytic enzymes are produced by a variety of pathogenic microorganisms, and contribute to host colonization by modulating virulence. Here, we present a first characterization of leptolysin, a Leptospira metalloprotease of the pappalysin family identified in a previous exoproteomic study. Comparative molecular analysis of leptolysin with two other pappalysins from prokaryotes, ulilysin and mirolysin, reveals similarities regarding calcium, zinc, and arginine -binding sites conservation within the catalytic domain, but also discloses peculiarities. Variations observed in the primary and tertiary structures may reflect differences in primary specificities. Purified recombinant leptolysin of L. interrogans was obtained as a ~50 kDa protein. The protease exhibited maximal activity at pH 8.0 and 37°C, and hydrolytic activity was observed in the presence of different salts with maximum efficiency in NaCl. Substrate specificity was assessed using a small number of FRET peptides, and showed a marked preference for arginine residues at the P1 position. L. interrogans leptolysin proteolytic activity on proteinaceous substrates such as proteoglycans and plasma fibronectin was also evaluated. All proteins tested were efficiently degraded over time, confirming the protease´s broad-spectrum activity in vitro. In addition, leptolysin induced morphological alterations on HK-2 cells, which may be partially attributed to extracellular matrix (ECM) degradation. Hemorrhagic foci were observed in the dorsal skin of mice intradermally injected with leptolysin, as a plausible consequence of ECM disarray and vascular endothelium glycocalyx damage. Assuming that leptospiral proteases play an important role in all stages of the infectious process, characterizing their functional properties, substrates and mechanisms of action is of great importance for therapeutic purposes.


Assuntos
Leptospira , Metaloproteases , Animais , Arginina/metabolismo , Leptospira/química , Leptospira/metabolismo , Leptospirose , Metaloproteases/metabolismo , Metaloproteases/farmacologia , Camundongos , Peptídeo Hidrolases/metabolismo
4.
Pathogens ; 10(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34684199

RESUMO

Coxiella burnetii is a global, highly infectious intracellular bacterium, able to infect a wide range of hosts and to persist for months in the environment. It is the etiological agent of Q fever-a zoonosis of global priority. Currently, there are no national surveillance data on C. burnetii's seroprevalence for any South American country, reinforcing the necessity of developing novel and inexpensive serological tools to monitor the prevalence of infections among humans and animals-especially cattle, goats, and sheep. In this study, we used immunoinformatics and computational biology tools to predict specific linear B-cell epitopes in three C. burnetii outer membrane proteins: OMP-H (CBU_0612), Com-1 (CBU_1910), and OMP-P1 (CBU_0311). Furthermore, predicted epitopes were tested by ELISA, as synthetic peptides, against samples of patients reactive to C. burnetii in indirect immunofluorescence assay, in order to evaluate their natural immunogenicity. In this way, two linear B-cell epitopes were identified in each studied protein (OMP-H(51-59), OMP-H(91-106), Com-1(57-76), Com-1(191-206), OMP-P1(197-209), and OMP-P1(215-227)); all of them were confirmed as naturally immunogenic by the presence of specific antibodies in 77% of studied patients against at least one of the identified epitopes. Remarkably, a higher frequency of endocarditis cases was observed among patients who presented an intense humoral response to OMP-H and Com-1 epitopes. These data confirm that immunoinformatics applied to the identification of specific B-cell epitopes can be an effective strategy to improve and accelerate the development of surveillance tools against neglected diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...