Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4033, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468473

RESUMO

Muscle stem cells, the engine of muscle repair, are affected in myotonic dystrophy type 1 (DM1); however, the underlying molecular mechanism and the impact on the disease severity are still elusive. Here, we show using patients' samples that muscle stem cells/myoblasts exhibit signs of cellular senescence in vitro and in situ. Single cell RNAseq uncovers a subset of senescent myoblasts expressing high levels of genes related to the senescence-associated secretory phenotype (SASP). We show that the levels of interleukin-6, a prominent SASP cytokine, in the serum of DM1 patients correlate with muscle weakness and functional capacity limitations. Drug screening revealed that the senolytic BCL-XL inhibitor (A1155463) can specifically remove senescent DM1 myoblasts by inducing their apoptosis. Clearance of senescent cells reduced the expression of SASP, which rescued the proliferation and differentiation capacity of DM1 myoblasts in vitro and enhanced their engraftment following transplantation in vivo. Altogether, this study identifies the pathogenic mechanism associated with muscle stem cell defects in DM1 and opens a therapeutic avenue that targets these defective cells to restore myogenesis.


Assuntos
Distrofia Miotônica , Células Satélites de Músculo Esquelético , Humanos , Distrofia Miotônica/tratamento farmacológico , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Senoterapia , Fibras Musculares Esqueléticas/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Desenvolvimento Muscular/genética
2.
Nat Commun ; 12(1): 6264, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716330

RESUMO

Lack of dystrophin causes muscle degeneration, which is exacerbated by chronic inflammation and reduced regenerative capacity of muscle stem cells in Duchenne Muscular Dystrophy (DMD). To date, glucocorticoids remain the gold standard for the treatment of DMD. These drugs are able to slow down the progression of the disease and increase lifespan by dampening the chronic and excessive inflammatory process; however, they also have numerous harmful side effects that hamper their therapeutic potential. Here, we investigated Resolvin-D2 as a new therapeutic alternative having the potential to target multiple key features contributing to the disease progression. Our in vitro findings showed that Resolvin-D2 promotes the switch of macrophages toward their anti-inflammatory phenotype and increases their secretion of pro-myogenic factors. Moreover, Resolvin-D2 directly targets myogenic cells and promotes their differentiation and the expansion of the pool of myogenic progenitor cells leading to increased myogenesis. These effects are ablated when the receptor Gpr18 is knocked-out, knocked-down, or blocked by the pharmacological antagonist O-1918. Using different mouse models of DMD, we showed that Resolvin-D2 targets both inflammation and myogenesis leading to enhanced muscle function compared to glucocorticoids. Overall, this preclinical study has identified a new therapeutic approach that is more potent than the gold-standard treatment for DMD.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Desenvolvimento Muscular/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/fisiopatologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Glucocorticoides/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Camundongos Endogâmicos mdx , Camundongos Knockout , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Desenvolvimento Muscular/fisiologia , Mioblastos/efeitos dos fármacos , Utrofina/genética
3.
Am J Pathol ; 190(3): 554-562, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31953038

RESUMO

BCL-2-associated athanogene 3 (BAG3) is a co-chaperone to heat shock proteins important in degrading misfolded proteins through chaperone-assisted selective autophagy. The recurrent dominant BAG3-P209L mutation results in a severe childhood-onset myofibrillar myopathy (MFM) associated with progressive muscle weakness, cardiomyopathy, and respiratory failure. Because a homozygous knock-in (KI) strain for the mP215L mutation homologous to the human P209L mutation did not have a gross phenotype, compound heterozygote knockout (KO) and KI mP215L mice were generated to establish whether further reduction in BAG3 expression would lead to a phenotype. The KI/KO mice have a significant decrease in voluntary movement compared with wild-type and KI/KI mice in the open field starting at 7 months. The KI/KI and KI/KO mice both have significantly smaller muscle fiber cross-sectional area. However, only the KI/KO mice have clear skeletal muscle histologic changes in MFM. As in patient muscle, there are increased levels of BAG3-interacting proteins, such as p62, heat shock protein B8, and αB-crystallin. The KI/KO mP215L strain is the first murine model of BAG3 myopathy that resembles the human skeletal muscle pathologic features. The results support the hypothesis that the pathologic development of MFM requires a significant decrease in BAG3 protein level and not only a gain of function caused by the dominant missense mutation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Miopatias Congênitas Estruturais/patologia , Animais , Cardiomiopatias/genética , Cardiomiopatias/patologia , Modelos Animais de Doenças , Genes Dominantes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Mutação , Miopatias Congênitas Estruturais/genética , Fenótipo
4.
Toxicon ; 167: p. 6-9, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib16074

RESUMO

This study evaluated cellular and molecular effects of radicicol, a heat shock protein (HSP) inducer, on the regeneration of skeletal muscle injured by crotoxin, the main toxin isolated from Crotalus durissus terrificus venom. Regenerating muscles treated with radicicol had decreased NF-kB activation. Differentiating myoblasts treated with radicicol showed reduced number of NF-kB positive nuclei and increased fusion index. The results suggest that radicicol enhances regeneration of muscle by attenuating NF-kB activation and increasing myogenic differentiation.

5.
J Gerontol A Biol Sci Med Sci ; 67(5): 443-55, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22113942

RESUMO

Skeletal muscles from old rats fail to completely regenerate following injury. This study investigated whether pharmacological stimulation of ß2-adrenoceptors in aged muscles following injury could improve their regenerative capacity, focusing on myofiber size recovery. Young and aged rats were treated with a subcutaneous injection of ß2-adrenergic agonist formoterol (2 µg/kg/d) up to 10 and 21 days after soleus muscle injury. Formoterol-treated muscles from old rats evaluated at 10 and 21 days postinjury showed reduced inflammation and connective tissue but a similar number of regenerating myofibers of greater caliber when compared with their injured controls. Formoterol minimized the decrease in tetanic force and increased protein synthesis and mammalian target of rapamycin phosphorylation in old muscles at 10 days postinjury. Our results suggest that formoterol improves structural and functional regenerative capacity of regenerating skeletal muscles from aged rats by increasing protein synthesis via mammalian target of rapamycin activation. Furthermore, formoterol may have therapeutic benefits in recovery following muscle damage in senescent individuals.


Assuntos
Etanolaminas/farmacologia , Músculo Esquelético/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Fatores Etários , Análise de Variância , Animais , Western Blotting , AMP Cíclico/metabolismo , Etanolaminas/administração & dosagem , Fumarato de Formoterol , Masculino , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Fosforilação , Ratos , Ratos Wistar , Estatísticas não Paramétricas , Serina-Treonina Quinases TOR/metabolismo
6.
Lasers Med Sci ; 27(5): 993-1000, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22143119

RESUMO

This work investigated the effect of gallium arsenide (GaAs) irradiation (power: 5 mW; intensity: 77.14 mW/cm(2), spot: 0.07 cm(2)) on regenerating skeletal muscles damaged by crotoxin (CTX). Male C57Bl6 mice were divided into six groups (n = 5 each): control, treated only with laser at doses of 1.5 J or 3 J, CTX-injured and, CTX-injured and treated with laser at doses of 1.5 J or 3 J. The injured groups received a CTX injection into the tibialis anterior (TA) muscle. After 3 days, TA muscles were submitted to GaAs irradiation at doses of 1.5 or 3 J (once a day, during 5 days) and were killed on the eighth day. Muscle histological sections were stained with hematoxylin and eosin (H&E) in order to determine the myofiber cross-sectional area (CSA), the previously injured muscle area (PIMA) and the area density of connective tissue. The gene expression of MyoD and myogenin was detected by real-time PCR. GaAs laser at a dose of 3 J, but not 1.5 J, significantly increased the CSA of regenerating myofibers and reduced the PIMA and the area density of intramuscular connective tissue of CTX-injured muscles. MyoD gene expression increased in the injured group treated with GaAs laser at a dose of 1.5 J. The CTX-injured, 3-J GaAs laser-treated, and the CTX-injured and treated with 3-J laser groups showed an increase in myogenin gene expression when compared to the control group. Our results suggest that GaAs laser treatment at a dose of 3 J improves skeletal muscle regeneration by accelerating the recovery of myofiber mass.


Assuntos
Lasers Semicondutores/uso terapêutico , Terapia com Luz de Baixa Intensidade , Músculo Esquelético/fisiologia , Músculo Esquelético/efeitos da radiação , Regeneração/efeitos da radiação , Animais , Crotoxina/toxicidade , Expressão Gênica/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/lesões , Miogenina/genética , Regeneração/genética , Regeneração/fisiologia
7.
Muscle Nerve ; 42(5): 778-87, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20976781

RESUMO

This work was undertaken to provide further insight into the role of mammalian target of rapamycin complex 1 (mTORC1) in skeletal muscle regeneration, focusing on myofiber size recovery. Rats were treated or not with rapamycin, an mTORC1 inhibitor. Soleus muscles were then subjected to cryolesion and analyzed 1, 10, and 21 days later. A decrease in soleus myofiber cross-section area on post-cryolesion days 10 and 21 was accentuated by rapamycin, which was also effective in reducing protein synthesis in these freeze-injured muscles. The incidence of proliferating satellite cells during regeneration was unaltered by rapamycin, although immunolabeling for neonatal myosin heavy chain (MHC) was weaker in cryolesion+rapamycin muscles than in cryolesion-only muscles. In addition, the decline in tetanic contraction of freeze-injured muscles was accentuated by rapamycin. This study indicates that mTORC1 plays a key role in the recovery of muscle mass and the differentiation of regenerating myofibers, independently of necrosis and satellite cell proliferation mechanisms.


Assuntos
Fibras Musculares Esqueléticas/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Animais , Antibióticos Antineoplásicos/farmacologia , Western Blotting , Diferenciação Celular/fisiologia , Proliferação de Células , Congelamento , Imuno-Histoquímica , Masculino , Contração Muscular/fisiologia , Proteínas Musculares/biossíntese , Cadeias Pesadas de Miosina/metabolismo , Tamanho do Órgão/fisiologia , Fosforilação , Ratos , Ratos Wistar , Regeneração/fisiologia , Proteínas Quinases S6 Ribossômicas/metabolismo , Sirolimo/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...