Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 3760, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28630407

RESUMO

Since climate change is expected to bring more severe and frequent extreme weather events such as heat waves, assessing the physiological and behavioural sensitivity of organisms to temperature becomes a priority. We therefore investigated the responses of honeybees, an important insect pollinator, to simulated heat waves (SHW). Honeybees are known to maintain strict brood thermoregulation, but the consequences at the colony and individual levels remain poorly understood. For the first time, we quantified and modelled colony real-time activity and found a 70% increase in foraging activity with SHW, which was likely due to the recruitment of previously inactive bees. Pollen and nectar foraging was not impacted, but an increase in water foragers was observed at the expense of empty bees. Contrary to individual energetic resources, vitellogenin levels increased with SHW, probably to protect bees against oxidative stress. Finally, though immune functions were not altered, we observed a significant decrease in deformed wing virus loads with SHW. In conclusion, we demonstrated that honeybees could remarkably adapt to heat waves without a cost at the individual level and on resource flow. However, the recruitment of backup foraging forces might be costly by lowering the colony buffering capacity against additional environmental pressures.


Assuntos
Abelhas/metabolismo , Temperatura Alta , Estresse Oxidativo/fisiologia , Termotolerância/fisiologia , Animais
2.
Ecol Evol ; 2(6): 1144-50, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22833790

RESUMO

Honey bee societies (Apis mellifera), the ectoparasitic mite Varroa destructor, and honey bee viruses that are vectored by the mite, form a complex system of host-parasite interactions. Coevolution by natural selection in this system has been hindered for European honey bee hosts since apicultural practices remove the mite and consequently the selective pressures required for such a process. An increasing mite population means increasing transmission opportunities for viruses that can quickly develop into severe infections, killing a bee colony. Remarkably, a few subpopulations in Europe have survived mite infestation for extended periods of over 10 years without management by beekeepers and offer the possibility to study their natural host-parasite coevolution. Our study shows that two of these "natural" honey bee populations, in Avignon, France and Gotland, Sweden, have in fact evolved resistant traits that reduce the fitness of the mite (measured as the reproductive success), thereby reducing the parasitic load within the colony to evade the development of overt viral infections. Mite reproductive success was reduced by about 30% in both populations. Detailed examinations of mite reproductive parameters suggest these geographically and genetically distinct populations favor different mechanisms of resistance, even though they have experienced similar selection pressures of mite infestation. Compared to unrelated control colonies in the same location, mites in the Avignon population had high levels of infertility while in Gotland there was a higher proportions of mites that delayed initiation of egg-laying. Possible explanations for the observed rapid coevolution are discussed.

3.
J Insect Physiol ; 58(8): 1112-21, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22634045

RESUMO

Honey bees allocate tasks along reproductive and non-reproductive lines: the queen mates and lays eggs, whereas the workers nurse the brood and forage for food. Among workers, tasks are distributed according to age: young workers nurse and old workers fly out and forage. This task distribution in the colony is further regulated by an increase in juvenile hormone III as workers age and by pheromones. One such compound is ethyl oleate (EO), a primer pheromone that delays the onset of foraging in young workers. EO is produced by foragers when they are exposed to ethanol (from fermented nectar) while gathering food. EO is perceived by younger bees via olfaction. We describe here the seasonal variation of EO production and the effects of Methoprene, a juvenile hormone analog. We found that honey bee workers biosynthesize more EO during the growing season than during the fall and winter months, reaching peak levels at late spring or summer. When caged workers were fed with syrup+d(6)-ethanol, labeled EO accumulated in the honey crop and large amounts exuded to the exoskeleton. Exuded levels were high for several hours after exposure to ethanol. Treatment with Methoprene increased the production of EO in worker bees, by speeding up its movement from biosynthetic sites to the exoskeleton, where EO evaporates. Crop fluid from bees collected monthly during the growing season showed a modest seasonal variation of in vitro EO biosynthetic activity that correlated with the dry and sunny periods during which bees could forage.


Assuntos
Abelhas/metabolismo , Ácidos Oleicos/biossíntese , Feromônios/biossíntese , Animais , Feminino , Metoprene/metabolismo , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...