Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
2.
Crit Care ; 27(1): 158, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085849

RESUMO

BACKGROUND: The development of stratification tools based on the assessment of circulating mRNA of genes involved in the immune response is constrained by the heterogeneity of septic patients. The aim of this study is to develop a transcriptomic score based on a pragmatic combination of immune-related genes detected with a prototype multiplex PCR tool. METHODS: As training cohort, we used the gene expression dataset obtained from 176 critically ill patients enrolled in the REALISM study (NCT02638779) with various etiologies and still hospitalized in intensive care unit (ICU) at day 5-7. Based on the performances of each gene taken independently to identify patients developing ICU-acquired infections (ICU-AI) after day 5-7, we built an unweighted score assuming the independence of each gene. We then determined the performances of this score to identify a subgroup of patients at high risk to develop ICU-AI, and both longer ICU length of stay and mortality of this high-risk group were assessed. Finally, we validated the effectiveness of this score in a retrospective cohort of 257 septic patients. RESULTS: This transcriptomic score (TScore) enabled the identification of a high-risk group of patients (49%) with an increased rate of ICU-AI when compared to the low-risk group (49% vs. 4%, respectively), with longer ICU length of stay (13 days [95% CI 8-30] vs. 7 days [95% CI 6-9], p < 0.001) and higher ICU mortality (15% vs. 2%). High-risk patients exhibited biological features of immune suppression with low monocytic HLA-DR levels, higher immature neutrophils rates and higher IL10 concentrations. Using the TScore, we identified 160 high-risk patients (62%) in the validation cohort, with 30% of ICU-AI (vs. 18% in the low-risk group, p = 0.06), and significantly higher mortality and longer ICU length of stay. CONCLUSIONS: The transcriptomic score provides a useful and reliable companion diagnostic tool to further develop immune modulating drugs in sepsis in the context of personalized medicine.


Assuntos
Sepse , Transcriptoma , Humanos , Estudos Retrospectivos , Estado Terminal , Sepse/diagnóstico , Sepse/genética , Unidades de Terapia Intensiva , Progressão da Doença
3.
Methods Mol Biol ; 2640: 99-115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36995590

RESUMO

Adult skeletal muscle is a dynamic tissue able to regenerate quite efficiently, thanks to the presence of stem cell machinery. Besides the quiescent satellite cells that are activated upon injury or paracrine factors, other stem cells are described to be directly or indirectly involved in adult myogenesis. Mesoangioblasts (MABs) are vessel-associated stem cells originally isolated from embryonic dorsal aorta and, at later stages, from the adult muscle interstitium expressing pericyte markers. Adult MABs entered clinical trials for the treatment of Duchenne muscular dystrophy and the transcriptome of human fetal MABs has been described. In addition, single cell RNA-seq analyses provide novel information on adult murine MABs and more in general in interstitial muscle stem cells. This chapter provides state-of-the-art techniques to isolate and characterize murine MABs, fetal and adult human MABs.


Assuntos
Distrofia Muscular de Duchenne , Células Satélites de Músculo Esquelético , Adulto , Humanos , Camundongos , Animais , Músculo Esquelético , Diferenciação Celular , Células-Tronco , Pericitos , Desenvolvimento Muscular
4.
Crit Care Med ; 51(6): 808-816, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36917594

RESUMO

OBJECTIVES: There is a crucial unmet need for biomarker-guided diagnostic and prognostic enrichment in clinical trials evaluating immune modulating therapies in critically ill patients. Low monocyte expression of human leukocyte antigen-DR (mHLA-DR), considered as a reference surrogate to identify immunosuppressed patients, has been proposed for patient stratification in immunostimulation approaches. However, its widespread use in clinic has been somewhat hampered by technical constraints inherent to flow cytometry technology. The objective of the present study was to evaluate the ability of a prototype multiplex polymerase chain reaction tool (immune profiling panel [IPP]) to identify immunosuppressed ICU patients characterized by a low mHLA-DR expression. DESIGN: Retrospective observational cohort study. SETTING: Adult ICU in a University Hospital, Lyon, France. PATIENTS: Critically ill patients with various etiologies enrolled in the REAnimation Low Immune Status Marker study (NCT02638779). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: mHLA-DR and IPP data were obtained from 1,731 blood samples collected from critically ill patients with various etiologies and healthy volunteers. A partial least square regression model combining the expression levels of IPP markers was trained and used for the identification of samples from patients presenting with evidence of immunosuppression, defined here as mHLADR less than 8,000 antibodies bound per cell (AB/C). The IPP gene set had an area under the receiver operating characteristic curve (AUC) of 0.86 (95% CI 0.83-0.89) for the identification of immunosuppressed patients. In addition, when applied to the 123 patients still in the ICU at days 5-7 after admission, IPP similarly enriched the number of patients with ICU-acquired infections in the immunosuppressed group (26%), in comparison with low mHLA-DR (22%). CONCLUSIONS: This study reports on the potential of the IPP gene set to identify ICU patients presenting with mHLA-DR less than 8,000 AB/C. Upon further optimization and validation, this molecular tool may help in the stratification of patients that could benefit from immunostimulation in the context of personalized medicine.


Assuntos
Estado Terminal , Monócitos , Adulto , Humanos , Estudos Retrospectivos , Antígenos HLA-DR/genética , Biomarcadores , Anticorpos
5.
Front Immunol ; 13: 1022750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389738

RESUMO

Immune responses affiliated with COVID-19 severity have been characterized and associated with deleterious outcomes. These approaches were mainly based on research tools not usable in routine clinical practice at the bedside. We observed that a multiplex transcriptomic panel prototype termed Immune Profiling Panel (IPP) could capture the dysregulation of immune responses of ICU COVID-19 patients at admission. Nine transcripts were associated with mortality in univariate analysis and this 9-mRNA signature remained significantly associated with mortality in a multivariate analysis that included age, SOFA and Charlson scores. Using a machine learning model with these 9 mRNA, we could predict the 28-day survival status with an Area Under the Receiver Operating Curve (AUROC) of 0.764. Interestingly, adding patients' age to the model resulted in increased performance to predict the 28-day mortality (AUROC reaching 0.839). This prototype IPP demonstrated that such a tool, upon clinical/analytical validation and clearance by regulatory agencies could be used in clinical routine settings to quickly identify patients with higher risk of death requiring thus early aggressive intensive care.


Assuntos
COVID-19 , Estado Terminal , Humanos , RNA Mensageiro , Hospitalização , Reação em Cadeia da Polimerase
6.
Front Immunol ; 13: 939899, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045686

RESUMO

A majority of patients with sepsis surviving the first days in intensive care units (ICU) enter a state of immunosuppression contributing to their worsening. A novel virotherapy based on the non-propagative Modified Virus Ankara (MVA) expressing the human interleukin-7 (hIL-7) cytokine fused to an Fc fragment, MVA-hIL-7-Fc, was developed and shown to enhance innate and adaptive immunity and confer survival advantages in murine sepsis models. Here, we assessed the capacity of hIL-7-Fc produced by the MVA-hIL-7-Fc to improve ex vivo T lymphocyte functions from ICU patients with sepsis. Primary hepatocytes were transduced with the MVA-hIL-7-Fc or an empty MVA, and cell supernatants containing the secreted hIL-7-Fc were harvested for in vitro and ex vivo studies. Whole blood from ICU patients [septic shock = 15, coronavirus disease 2019 (COVID-19) = 30] and healthy donors (n = 36) was collected. STAT5 phosphorylation, cytokine production, and cell proliferation were assessed upon T cell receptor (TCR) stimulation in presence of MVA-hIL-7-Fc-infected cell supernatants. Cells infected by MVA-hIL-7-Fc produced a dimeric, glycosylated, and biologically active hIL-7-Fc. Cell supernatants containing the expressed hIL-7-Fc triggered the IL-7 pathway in T lymphocytes as evidenced by the increased STAT5 phosphorylation in CD3+ cells from patients and healthy donors. The secreted hIL-7-Fc improved Interferon-γ (IFN-γ) and/or Tumor necrosis factor-α (TNF-α) productions and CD4+ and CD8+ T lymphocyte proliferation after TCR stimulation in patients with bacterial and viral sepsis. This study demonstrates the capacity of the novel MVA-hIL-7-Fc-based virotherapy to restore ex vivo T cells immune functions in ICU patients with sepsis and COVID-19, further supporting its clinical development.


Assuntos
COVID-19 , Sepse , Choque Séptico , Animais , COVID-19/terapia , Estado Terminal , Citocinas/metabolismo , Humanos , Interleucina-7/metabolismo , Camundongos , Receptores de Antígenos de Linfócitos T/metabolismo , Fator de Transcrição STAT5/metabolismo , Sepse/terapia
7.
Front Med (Lausanne) ; 9: 930043, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847809

RESUMO

Background: Novel biomarkers are needed to progress toward individualized patient care in sepsis. The immune profiling panel (IPP) prototype has been designed as a fully-automated multiplex tool measuring expression levels of 26 genes in sepsis patients to explore immune functions, determine sepsis endotypes and guide personalized clinical management. The performance of the IPP gene set to predict 30-day mortality has not been extensively characterized in heterogeneous cohorts of sepsis patients. Methods: Publicly available microarray data of sepsis patients with widely variable demographics, clinical characteristics and ethnical background were co-normalized, and the performance of the IPP gene set to predict 30-day mortality was assessed using a combination of machine learning algorithms. Results: We collected data from 1,801 arrays sampled on sepsis patients and 598 sampled on controls in 17 studies. When gene expression was assayed at day 1 following admission (1,437 arrays sampled on sepsis patients, of whom 1,161 were alive and 276 (19.2%) were dead at day 30), the IPP gene set showed good performance to predict 30-day mortality, with an area under the receiving operating characteristics curve (AUROC) of 0.710 (CI 0.652-0.768). Importantly, there was no statistically significant improvement in predictive performance when training the same models with all genes common to the 17 microarray studies (n = 7,122 genes), with an AUROC = 0.755 (CI 0.697-0.813, p = 0.286). In patients with gene expression data sampled at day 3 following admission or later, the IPP gene set had higher performance, with an AUROC = 0.804 (CI 0.643-0.964), while the total gene pool had an AUROC = 0.787 (CI 0.610-0.965, p = 0.811). Conclusion: Using pooled publicly-available gene expression data from multiple cohorts, we showed that the IPP gene set, an immune-related transcriptomics signature conveys relevant information to predict 30-day mortality when sampled at day 1 following admission. Our data also suggests that higher predictive performance could be obtained when assaying gene expression at later time points during the course of sepsis. Prospective studies are needed to confirm these findings using the IPP gene set on its dedicated measurement platform.

9.
Ann Intensive Care ; 12(1): 21, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35246776

RESUMO

BACKGROUND: Lymphopenia is a hallmark of severe coronavirus disease 19 (COVID-19). Similar alterations have been described in bacterial sepsis and therapeutic strategies targeting T cell function such as recombinant human interleukin 7 (rhIL-7) have been proposed in this clinical context. As COVID-19 is a viral sepsis, the objectives of this study were to characterize T lymphocyte response over time in severe COVID-19 patients and to assess the effect of ex vivo administration of rhIL-7. RESULTS: Peripheral blood mononuclear cells from COVID-19 patients hospitalized in intensive care unit (ICU) were collected at admission and after 20 days. Transcriptomic profile was evaluated through NanoString technology. Inhibitory immune checkpoints expressions were determined by flow cytometry. T lymphocyte proliferation and IFN-γ production were evaluated after ex vivo stimulation in the presence or not of rhIL-7. COVID-19 ICU patients were markedly lymphopenic at admission. Mononuclear cells presented with inhibited transcriptomic profile prevalently with impaired T cell activation pathways. CD4 + and CD8 + T cells presented with over-expression of co-inhibitory molecules PD-1, PD-L1, CTLA-4 and TIM-3. CD4 + and CD8 + T cell proliferation and IFN-γ production were markedly altered in samples collected at ICU admission. These alterations, characteristic of a T cell exhaustion state, were more pronounced at ICU admission and alleviated over time. Treatment with rhIL-7 ex vivo significantly improved both T cell proliferation and IFN-γ production in cells from COVID-19 patients. CONCLUSIONS: Severe COVID-19 patients present with features of profound T cell exhaustion upon ICU admission which can be reversed ex vivo by rhIL-7. These results reinforce our understanding of severe COVID-19 pathophysiology and opens novel therapeutic avenues to treat such critically ill patients based of immunomodulation approaches. Defining the appropriate timing for initiating such immune-adjuvant therapy in clinical setting and the pertinent markers for a careful selection of patients are now warranted to confirm the ex vivo results described so far. Trial registration ClinicalTrials.gov identifier: NCT04392401 Registered 18 May 2020, http:// clinicaltrials.gov/ct2/show/NCT04392401.

10.
EBioMedicine ; 78: 103967, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35349827

RESUMO

BACKGROUND: In critically ill COVID-19 patients, the initial response to SARS-CoV-2 infection is characterized by major immune dysfunctions. The capacity of these severe patients to mount a robust and persistent SARS-CoV-2 specific T cell response despite the presence of severe immune alterations during the ICU stay is unknown. METHODS: Critically ill COVID-19 patients were sampled five times during the ICU stay and 9 and 13 months afterwards. Immune monitoring included counts of lymphocyte subpopulations, HLA-DR expression on monocytes, plasma IL-6 and IL-10 concentrations, anti-SARS-CoV-2 IgG levels and T cell proliferation in response to three SARS-CoV-2 antigens. FINDINGS: Despite the presence of major lymphopenia and decreased monocyte HLA-DR expression during the ICU stay, convalescent critically ill COVID-19 patients consistently generated adaptive and humoral immune responses against SARS-CoV-2 maintained for more than one year after hospital discharge. Patients with long hospital stays presented with stronger anti-SARS-CoV-2 specific T cell response but no difference in anti-SARS-CoV2 IgG levels. INTERPRETATION: Convalescent critically ill COVID-19 patients consistently generated a memory immune response against SARS-CoV-2 maintained for more than one year after hospital discharge. In recovered individuals, the intensity of SARS-CoV-2 specific T cell response was dependent on length of hospital stay. FUNDING: This observational study was supported by funds from the Hospices Civils de Lyon, Fondation HCL, Claude Bernard Lyon 1 University and Région Auvergne Rhône-Alpes and by partial funding by REACTing (Research and ACTion targeting emerging infectious diseases) INSERM, France and a donation from Fondation AnBer (http://fondationanber.fr/).


Assuntos
COVID-19 , Memória Imunológica , Linfócitos T , Anticorpos Antivirais/sangue , COVID-19/imunologia , Estado Terminal , Antígenos HLA-DR , Humanos , Imunoglobulina G/sangue , SARS-CoV-2 , Linfócitos T/imunologia
11.
Front Immunol ; 12: 795052, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912347

RESUMO

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. The immune system plays a key role in sepsis onset and remains dysregulated over time in a heterogeneous manner. Here, we decipher the heterogeneity of the first week evolution of the monocyte HLA-DR (mHLA-DR) surface protein expression in septic patients, a key molecule for adaptive immunity onset. We found and verified four distinctive trajectories endotypes in a discovery (n = 276) and a verification cohort (n = 102). We highlight that 59% of septic patients exhibit low or decreasing mHLA-DR expression while in others mHLA-DR expression increased. This study depicts the first week behavior of mHLA-DR over time after sepsis onset and shows that initial and third day mHLA-DR expression measurements is sufficient for an early risk stratification of sepsis patients. These patients might benefit from immunomodulatory treatment to improve outcomes. Going further, our study introduces a way of deciphering heterogeneity of immune system after sepsis onset which is a first step to reach a more comprehensive landscape of sepsis.


Assuntos
Antígenos HLA-DR/metabolismo , Monócitos/imunologia , Sepse/imunologia , Idoso , Biomarcadores , Diferenciação Celular , Linhagem da Célula , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Imunomodulação , Masculino , Monitorização Imunológica , Fenótipo , Prognóstico , Sepse/diagnóstico , Regulação para Cima
12.
Arch Med Res ; 52(8): 850-857, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34538689

RESUMO

BACKGROUND: As COVID-19 pandemic and vaccination effects progress, research now focuses on adaptive immunological response to SARS-CoV-2. Few studies specifically investigated intensive care unit (ICU) patients, and little is known about kinetics of humoral response in such critically ill patients. In this context, the main objective of the present work was to perform a longitudinal analysis of the humoral response in critically ill COVID-19 patients with prolonged ICU stays in regard with initial inflammatory response, disease severity and mortality. METHODS: Over a 3 week period, circulating immunoglobulins (Ig) against SARS-CoV-2 along with several immunological and clinical parameters were measured in 64 ICU COVID-19 patients. RESULTS: Critically ill COVID-19 patients mounted a dynamic and sustained antibody response of both IgM and IgG as soon as the first day of ICU hospitalization. This serological response was not associated with any of the classical immunological parameters measured at ICU admission or with initial severity clinical scores. IgM and IgG levels and seroconversion trajectories were not associated with unfavourable outcome. CONCLUSION: Despite rapid seroconversion and elevated humoral response, COVID-19 patients are still characterized by elevated mortality. Additional studies, including cytotoxic T cell functions, are mandatory to understand the immunological mechanisms contributing to long stay of COVID-19 patients in ICU.


Assuntos
COVID-19 , Estado Terminal , Humanos , Unidades de Terapia Intensiva , Pandemias , SARS-CoV-2 , Soroconversão
13.
J Clin Med ; 11(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35011836

RESUMO

Intensive care unit (ICU) patients develop an altered host immune response after severe injuries. This response may evolve towards a state of persistent immunosuppression that is associated with adverse clinical outcomes. The expression of human leukocyte antigen DR on circulating monocytes (mHLA-DR) and ex vivo release of tumor necrosis factor α (TNF-α) by lipopolysaccharide-stimulated whole blood are two related biomarkers offered to characterize this phenomenon. The purpose of this study was to concomitantly evaluate the association between mHLA-DR and TNF-α release and adverse clinical outcome (i.e., death or secondary infection) after severe trauma, sepsis or surgery in a cohort of 353 ICU patients. mHLA-DR and TNF-α release was similarly and significantly reduced in patients whatever the type of injury. Persistent decreases in both markers at days 5-7 (post-admission) were significantly associated with adverse outcomes. Overall, mHLA-DR (measured by flow cytometry) appears to be a more robust and standardized parameter. Each marker can be used individually as a surrogate of immunosuppression, depending on center facilities. Combining these two parameters could be of interest to identify the most immunosuppressed patients presenting with a high risk of worsening. This last aspect deserves further exploration.

14.
Cell Death Dis ; 11(8): 654, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811811

RESUMO

Contractile myofiber units are mainly composed of thick myosin and thin actin (F-actin) filaments. F-Actin interacts with Microtubule Associated Monooxygenase, Calponin And LIM Domain Containing 2 (MICAL2). Indeed, MICAL2 modifies actin subunits and promotes actin filament turnover by severing them and preventing repolymerization. In this study, we found that MICAL2 increases during myogenic differentiation of adult and pluripotent stem cells (PSCs) towards skeletal, smooth and cardiac muscle cells and localizes in the nucleus of acute and chronic regenerating muscle fibers. In vivo delivery of Cas9-Mical2 guide RNA complexes results in muscle actin defects and demonstrates that MICAL2 is essential for skeletal muscle homeostasis and functionality. Conversely, MICAL2 upregulation shows a positive impact on skeletal and cardiac muscle commitments. Taken together these data demonstrate that modulations of MICAL2 have an impact on muscle filament dynamics and its fine-tuned balance is essential for the regeneration of muscle tissues.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Contração Muscular/fisiologia , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/fisiologia , Actinas/metabolismo , Actinas/fisiologia , Animais , Diferenciação Celular/fisiologia , Proteínas do Citoesqueleto/fisiologia , Citoesqueleto/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Músculo Liso/fisiologia , Miosinas/fisiologia
15.
Oncotarget ; 7(46): 74747-74767, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27732969

RESUMO

The cytoplasmic tyrosine kinase ABL exerts positive or negative effects in solid tumours according to the cellular context, thus functioning as a "switch modulator". The therapeutic effects of drugs targeting a set of signals encompassing ABL have been explored in several solid tumours. However, the net contribution of ABL inhibition by these agents remains elusive as these drugs also act on other signalling components. Here, using glioblastoma (GBM) as a cellular paradigm, we report that ABL inhibition exacerbates mesenchymal features as highlighted by down-regulation of epithelial markers and up-regulation of mesenchymal markers. Cells with permanent ABL inhibition exhibit enhanced motility and invasive capabilities, while proliferation and tumorigenic properties are reduced. Intriguingly, permanent ABL inhibition also interferes with GBM neurosphere formation and with expression of stemness markers in sphere-cultured GBM cells. Furthermore, we show that the molecular and biological characteristics of GBM cells with impaired ABL are reversible by restoring ABL levels, thus uncovering a remarkable plasticity of GBM cells to ABL threshold. A phospho-signalling screen revealed that loss of tumorigenic and self-renewal properties in GBM cells under permanent ABL inhibition coincide with drastic changes in the expression and/or phosphorylation levels of multiple signalling components. Our findings identify ABL as a crucial player for migration, invasion, proliferation, tumorigenic, and stem-cell like properties of GBM cells. Taken together, this work supports the notion that the oncogenic role of ABL in GBM cells is associated with its capability to coordinate a signalling setting that determines tumorigenic and stem-cell like properties.


Assuntos
Neoplasias Encefálicas/metabolismo , Transformação Celular Neoplásica/metabolismo , Glioblastoma/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Transdução de Sinais , Biomarcadores , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Autorrenovação Celular/genética , Transformação Celular Neoplásica/genética , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas c-abl/genética
17.
Cell Host Microbe ; 16(3): 338-50, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25211076

RESUMO

Dugesia japonica planarian flatworms are naturally exposed to various microbes but typically survive this challenge. We show that planarians eliminate bacteria pathogenic to Homo sapiens, Caenorhabditis elegans, and/or Drosophila melanogaster and thus represent a model to identify innate resistance mechanisms. Whole-transcriptome analysis coupled with RNAi screening of worms infected with Staphylococcus aureus or Legionella pneumophila identified 18 resistance genes with nine human orthologs, of which we examined the function of MORN2. Human MORN2 facilitates phagocytosis-mediated restriction of Mycobacterium tuberculosis, L. pneumophila, and S. aureus in macrophages. MORN2 promotes the recruitment of LC3, an autophagy protein also involved in phagocytosis, to M. tuberculosis-containing phagosomes and subsequent maturation to degradative phagolysosomes. MORN2-driven trafficking of M. tuberculosis to single-membrane, LC3-positive compartments requires autophagy-related proteins Atg5 and Beclin-1, but not Ulk-1 and Atg13, highlighting the importance of MORN2 in LC3-associated phagocytosis. These findings underscore the value of studying planarian defenses to identify immune factors.


Assuntos
Proteínas de Helminto/imunologia , Legionella pneumophila/fisiologia , Proteínas Associadas aos Microtúbulos/imunologia , Fagocitose , Planárias/imunologia , Planárias/microbiologia , Staphylococcus aureus/fisiologia , Animais , Infecções Bacterianas/genética , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Modelos Animais de Doenças , Proteínas de Helminto/genética , Humanos , Legionella pneumophila/imunologia , Proteínas Associadas aos Microtúbulos/genética , Planárias/genética , Staphylococcus aureus/imunologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-25610812

RESUMO

To survive in macrophages, Coxiella burnetii hijacks the activation pathway of macrophages. Recently, we have demonstrated that C. burnetii, via its lipopolysaccharide (LPS), avoids the activation of p38α-MAPK through an antagonistic engagement of Toll-like receptor (TLR)-4. We investigated the fine-tuned mechanism leading to the absence of activation of the p38α-MAPK despite TLR-4 engagement. In macrophages challenged with LPS from the avirulent variants of C. burnetii, TLR-4 and TLR-2 co-immunoprecipitated. This association was absent in cells challenged by the LPS of pathogenic C. burnetii. The disruption makes TLRs unable to signal during the recognition of the LPS of pathogenic C. burnetii. The disruption of TLR-2 and TLR-4 was induced by the re-organization of the macrophage cytoskeleton by C. burnetii LPS. Interestingly, blocking the actin cytoskeleton re-organization relieved the disruption of the association TLR-2/TLR-4 by pathogenic C. burnetii and rescued the p38α-MAPK activation by C. burnetii. We elucidated an unexpected mechanism allowing pathogenic C. burnetii to avoid macrophage activation by the disruption of the TLR-2 and TLR-4 association.


Assuntos
Coxiella burnetii/metabolismo , Lipopolissacarídeos/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Febre Q/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Células Cultivadas , Coxiella burnetii/genética , Ativação Enzimática , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/enzimologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 14 Ativada por Mitógeno/genética , Ligação Proteica , Febre Q/enzimologia , Febre Q/genética , Febre Q/microbiologia , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-25629007

RESUMO

The strategies evolved by pathogens to infect hosts and the mechanisms used by the host to eliminate intruders are highly complex. Because several biological pathways and processes are conserved across model organisms, these organisms have been used for many years to elucidate and understand the mechanisms of the host-pathogen relationship and particularly to unravel the molecular processes enacted by the host to kill pathogens. The emergence of RNA interference (RNAi) and the ability to apply it toward studies in model organisms have allowed a breakthrough in the elucidation of host-pathogen interactions. The aim of this mini-review is to highlight and describe recent breakthroughs in the field of host-pathogen interactions using RNAi screens of model organisms. We will focus specifically on the model organisms Drosophila melanogaster, Caenorhabditis elegans, and Danio rerio. Moreover, a recent study examining the immune system of planarian will be discussed.


Assuntos
Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Mamíferos/genética , Modelos Animais , Interferência de RNA , Peixe-Zebra/genética , Animais , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/microbiologia , Drosophila melanogaster/imunologia , Drosophila melanogaster/microbiologia , Humanos , Mamíferos/imunologia , Mamíferos/microbiologia , Peixe-Zebra/imunologia , Peixe-Zebra/microbiologia
20.
J Vis Exp ; (81): e50966, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24300014

RESUMO

Macrophages are critical components of the innate and adaptive immune responses, and they are the first line of defense against foreign invaders because of their powerful microbicidal activities. Macrophages are widely distributed throughout the body and are present in the lymphoid organs, liver, lungs, gastrointestinal tract, central nervous system, bone, and skin. Because of their repartition, they participate in a wide range of physiological and pathological processes. Macrophages are highly versatile cells that are able to recognize microenvironmental alterations and to maintain tissue homeostasis. Numerous pathogens have evolved mechanisms to use macrophages as Trojan horses to survive, replicate in, and infect both humans and animals and to propagate throughout the body. The recent explosion of interest in evolutionary, genetic, and biochemical aspects of host-pathogen interactions has renewed scientific attention regarding macrophages. Here, we describe a procedure to isolate and cultivate macrophages from murine bone marrow that will provide large numbers of macrophages for studying host-pathogen interactions as well as other processes.


Assuntos
Células da Medula Óssea/citologia , Técnicas Citológicas/métodos , Macrófagos/citologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Fibroblastos/citologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...