Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(28): eadg9159, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37436987

RESUMO

Hypergraphs, describing networks where interactions take place among any number of units, are a natural tool to model many real-world social and biological systems. Here, we propose a principled framework to model the organization of higher-order data. Our approach recovers community structure with accuracy exceeding that of currently available state-of-the-art algorithms, as tested in synthetic benchmarks with both hard and overlapping ground-truth partitions. Our model is flexible and allows capturing both assortative and disassortative community structures. Moreover, our method scales orders of magnitude faster than competing algorithms, making it suitable for the analysis of very large hypergraphs, containing millions of nodes and interactions among thousands of nodes. Our work constitutes a practical and general tool for hypergraph analysis, broadening our understanding of the organization of real-world higher-order systems.

2.
Nat Commun ; 13(1): 7229, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36433942

RESUMO

Hypergraphs, encoding structured interactions among any number of system units, have recently proven a successful tool to describe many real-world biological and social networks. Here we propose a framework based on statistical inference to characterize the structural organization of hypergraphs. The method allows to infer missing hyperedges of any size in a principled way, and to jointly detect overlapping communities in presence of higher-order interactions. Furthermore, our model has an efficient numerical implementation, and it runs faster than dyadic algorithms on pairwise records projected from higher-order data. We apply our method to a variety of real-world systems, showing strong performance in hyperedge prediction tasks, detecting communities well aligned with the information carried by interactions, and robustness against addition of noisy hyperedges. Our approach illustrates the fundamental advantages of a hypergraph probabilistic model when modeling relational systems with higher-order interactions.


Assuntos
Algoritmos , Modelos Estatísticos , Projetos de Pesquisa , Morfogênese
3.
Sci Rep ; 10(1): 15736, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978484

RESUMO

Community detection in networks is commonly performed using information about interactions between nodes. Recent advances have been made to incorporate multiple types of interactions, thus generalizing standard methods to multilayer networks. Often, though, one can access additional information regarding individual nodes, attributes, or covariates. A relevant question is thus how to properly incorporate this extra information in such frameworks. Here we develop a method that incorporates both the topology of interactions and node attributes to extract communities in multilayer networks. We propose a principled probabilistic method that does not assume any a priori correlation structure between attributes and communities but rather infers this from data. This leads to an efficient algorithmic implementation that exploits the sparsity of the dataset and can be used to perform several inference tasks; we provide an open-source implementation of the code online. We demonstrate our method on both synthetic and real-world data and compare performance with methods that do not use any attribute information. We find that including node information helps in predicting missing links or attributes. It also leads to more interpretable community structures and allows the quantification of the impact of the node attributes given in input.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...