Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(6): e10131, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37293122

RESUMO

Intraspecific variation is an important form of biodiversity that can alter community and ecosystem properties. Recent work demonstrates the community effects of intraspecific variation in predators via altering prey communities and in foundation species via shaping habitat attributes. However, tests of the community effects of intraspecific trait variation in predators acting on foundation species are lacking despite the fact that consumption of foundation species can have strong community effects by shaping habitat structure. Here, we tested the hypothesis that intraspecific foraging differences among populations of mussel-drilling dogwhelk predators (Nucella) differentially alter intertidal communities through effects on foundational mussels. We conducted a 9-month field experiment where we exposed intertidal mussel bed communities to predation from three Nucella populations that exhibit differences in size-selectivity and consumption time for mussel prey. At the end of the experiment, we measured mussel bed structure, species diversity, and community composition. While exposure to Nucella originating from different populations did not significantly alter overall community diversity, we found that differences in Nucella mussel selectivity significantly altered foundational mussel bed structure, which in turn altered the biomass of shore crabs and periwinkle snails. Our study extends the emerging paradigm of the ecological importance of intraspecific variation to include the effects of intraspecific variation on predators of foundation species.

2.
Oecologia ; 192(2): 553-564, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31932922

RESUMO

Trait variation among populations is important for shaping ecological dynamics. In marine intertidal systems, seawater temperature, low tide emersion temperature, and pH can drive variation in traits and affect species interactions. In western North America, Nucella dogwhelks are intertidal drilling predators of the habitat-forming mussel Mytilus californianus. Nucella exhibit local adaptation, but it is not known to what extent environmental factors and genetic structure contribute to variation in prey selectivity among populations. We surveyed drilled mussels at sites across Oregon and California, USA, and used multiple regression and Mantel tests to test the effects of abiotic factors and Nucella neutral genetic relatedness on the size of mussels drilled across sites. Our results show that Nucella at sites characterized by higher and less variable temperature and pH drilled larger mussels. Warmer temperatures appear to induce faster handling time, and more stable pH conditions may prolong opportunities for active foraging by reducing exposure to repeated stressful conditions. In contrast, there was no significant effect of genetic relatedness on prey size selectivity. Our results emphasize the role of climate in shaping marine predator selectivity on a foundation species. As coastal climates change, predator traits will respond to localized environmental conditions, changing ecological interactions.


Assuntos
Ecossistema , Comportamento Predatório , Animais , California , Clima , Oregon
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...