Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 18: 1397627, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846639

RESUMO

The blood-brain barrier (BBB) represents a crucial interface between the circulatory system and the brain. In Drosophila melanogaster, the BBB is composed of perineurial and subperineurial glial cells. The perineurial glial cells are small mitotically active cells forming the outermost layer of the nervous system and are engaged in nutrient uptake. The subperineurial glial cells form occluding septate junctions to prevent paracellular diffusion of macromolecules into the nervous system. To address whether the subperineurial glia just form a simple barrier or whether they establish specific contacts with both the perineurial glial cells and inner central nervous system (CNS) cells, we undertook a detailed morphological analysis. Using genetically encoded markers alongside with high-resolution laser scanning confocal microscopy and transmission electron microscopy, we identified thin cell processes extending into the perineurial layer and into the CNS cortex. Interestingly, long cell processes were observed reaching the glia ensheathing the neuropil of the central brain. GFP reconstitution experiments highlighted multiple regions of membrane contacts between subperineurial and ensheathing glia. Furthermore, we identify the G-protein-coupled receptor (GPCR) Moody as negative regulator of the growth of subperineurial cell processes. Loss of moody triggered a massive overgrowth of subperineurial cell processes into the CNS cortex and, moreover, affected the polarized localization of the xenobiotic transporter Mdr65. Finally, we found that GPCR signaling, but not septate junction formation, is responsible for controlling membrane overgrowth. Our findings support the notion that the Drosophila BBB is able to bridge the communication gap between circulation and synaptic regions of the brain by long cell processes.

2.
Neurobiol Dis ; 180: 106071, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36898613

RESUMO

The accurate regulation of the microenvironment within the nervous system is one of the key features characterizing complex organisms. To this end, neural tissue has to be physically separated from circulation, but at the same time, mechanisms must be in place to allow controlled transport of nutrients and macromolecules into and out of the brain. These roles are executed by cells of the blood-brain barrier (BBB) found at the interface of circulation and neural tissue. BBB dysfunction is observed in several neurological diseases in human. Although this can be considered as a consequence of diseases, strong evidence supports the notion that BBB dysfunction can promote the progression of brain disorders. In this review, we compile the recent evidence describing the contribution of the Drosophila BBB to the further understanding of brain disease features in human patients. We discuss the function of the Drosophila BBB during infection and inflammation, drug clearance and addictions, sleep, chronic neurodegenerative disorders and epilepsy. In summary, this evidence suggests that the fruit fly, Drosophila melanogaster, can be successfully employed as a model to disentangle mechanisms underlying human diseases.


Assuntos
Barreira Hematoencefálica , Encefalopatias , Animais , Humanos , Barreira Hematoencefálica/fisiologia , Drosophila melanogaster , Drosophila , Encéfalo
3.
Neurosci Insights ; 17: 26331055221120252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225749

RESUMO

In the wild, animals face different challenges including multiple events of food scarcity. How they overcome these conditions is essential for survival. Thus, adaptation mechanisms evolved to allow the development and survival of an organism during nutrient restriction periods. Given the high energy demand of the nervous system, the molecular mechanisms of adaptation to malnutrition are of great relevance to fuel the brain. The blood-brain barrier (BBB) is the interface between the central nervous system (CNS) and the circulatory system. The BBB mediates the transport of macromolecules in and out of the CNS, and therefore, it can buffer changes in nutrient availability. In this review, we collect the current evidence using the fruit fly, Drosophila melanogaster, as a model of the role of the BBB in the adaptation to starvation. We discuss the role of the Drosophila BBB during nutrient deprivation as a potential sensor for circulating nutrients, and transient nutrient storage as a regulator of the CNS neurogenic niche.

4.
Dev Cell ; 57(9): 1193-1207.e7, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35483359

RESUMO

Temporal patterning of neural progenitors is an evolutionarily conserved strategy for generating neuronal diversity. Type II neural stem cells in the Drosophila central brain produce transit-amplifying intermediate neural progenitors (INPs) that exhibit temporal patterning. However, the known temporal factors cannot account for the neuronal diversity in the adult brain. To search for missing factors, we developed NanoDam, which enables rapid genome-wide profiling of endogenously tagged proteins in vivo with a single genetic cross. Mapping the targets of known temporal transcription factors with NanoDam revealed that Homeobrain and Scarecrow (ARX and NKX2.1 orthologs) are also temporal factors. We show that Homeobrain and Scarecrow define middle-aged and late INP temporal windows and play a role in cellular longevity. Strikingly, Homeobrain and Scarecrow have conserved functions as temporal factors in the developing visual system. NanoDam enables rapid cell-type-specific genome-wide profiling with temporal resolution and is easily adapted for use in higher organisms.


Assuntos
Proteínas de Drosophila , Células-Tronco Neurais , Animais , Encéfalo/metabolismo , Linhagem da Célula , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Neurais/metabolismo
5.
J Neurosci ; 41(30): 6430-6448, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34210781

RESUMO

The adaptable transcriptional response to changes in food availability not only ensures animal survival but also lets embryonic development progress. Interestingly, the CNS is preferentially protected from periods of malnutrition, a phenomenon known as "brain sparing." However, the mechanisms that mediate this response remain poorly understood. To get a better understanding of this, we used Drosophila melanogaster as a model, analyzing the transcriptional response of neural stem cells (neuroblasts) and glia of the blood-brain barrier (BBB) from larvae of both sexes during nutrient restriction using targeted DamID. We found differentially expressed genes in both neuroblasts and glia of the BBB, although the effect of nutrient deficiency was primarily observed in the BBB. We characterized the function of a nutritional sensitive gene expressed in the BBB, the serine protease homolog, scarface (scaf). Scaf is expressed in subperineurial glia in the BBB in response to nutrition. Tissue-specific knockdown of scaf increases subperineurial glia endoreplication and proliferation of perineurial glia in the blood-brain barrier. Furthermore, neuroblast proliferation is diminished on scaf knockdown in subperineurial glia. Interestingly, reexpression of Scaf in subperineurial glia is able to enhance neuroblast proliferation and brain growth of animals in starvation. Finally, we show that loss of scaf in the blood-brain barrier increases sensitivity to drugs in adulthood, suggesting a physiological impairment. We propose that Scaf integrates the nutrient status to modulate the balance between neurogenesis and growth of the BBB, preserving the proper equilibrium between the size of the barrier and the brain.SIGNIFICANCE STATEMENT The Drosophila BBB separates the CNS from the open circulatory system. The BBB glia are not only acting as a physical segregation of tissues but participate in the regulation of the metabolism and neurogenesis during development. Here we analyze the transcriptional response of the BBB glia to nutrient deprivation during larval development, a condition in which protective mechanisms are switched on in the brain. Our findings show that the gene scarface reduces growth in the BBB while promoting the proliferation of neural stem, assuring the balanced growth of the larval brain. Thus, Scarface would link animal nutrition with brain development, coordinating neurogenesis with the growth of the BBB.


Assuntos
Barreira Hematoencefálica/metabolismo , Proteínas de Drosophila/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Neuroglia/metabolismo , Serina Proteases/metabolismo , Animais , Barreira Hematoencefálica/crescimento & desenvolvimento , Drosophila melanogaster , Feminino , Masculino , Desnutrição
6.
Front Cell Dev Biol ; 9: 612645, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968921

RESUMO

Neurogenesis is achieved through a sequence of steps that include specification and differentiation of progenitors into mature neurons. Frequently, precursors migrate to distinct positions before terminal differentiation. The Slit-Robo pathway, formed by the secreted ligand Slit and its membrane bound receptor Robo, was first discovered as a regulator of axonal growth. However, today, it is accepted that this pathway can regulate different cellular processes even outside the nervous system. Since most of the studies performed in the nervous system have been focused on axonal and dendritic growth, it is less clear how versatile is this signaling pathway in the developing nervous system. Here we describe the participation of the Slit-Robo pathway in the development of motion sensitive neurons of the Drosophila visual system. We show that Slit and Robo receptors are expressed in different stages during the neurogenesis of motion sensitive neurons. Furthermore, we find that Slit and Robo regulate multiple aspects of their development including neuronal precursor migration, cell segregation between neural stem cells and daughter cells and formation of their connectivity pattern. Specifically, loss of function of slit or robo receptors in differentiated motion sensitive neurons impairs dendritic targeting, while knocking down robo receptors in migratory progenitors or neural stem cells leads to structural defects in the adult optic lobe neuropil, caused by migration and cell segregation defects during larval development. Thus, our work reveals the co-option of the Slit-Robo signaling pathway in distinct developmental stages of a neural lineage.

7.
Front Physiol ; 11: 996, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982773

RESUMO

While the function of proteins and genes has been widely studied during vertebrate development, relatively little work has addressed the role of carbohydrates. Hyaluronan (HA), also known as hyaluronic acid, is an abundant carbohydrate in embryonic tissues and is the main structural component of the extracellular matrix of epithelial and mesenchymal cells. HA is able to absorb large quantities of water and can signal by binding to cell-surface receptors. During organ development and regeneration, HA has been shown to regulate cell proliferation, cell shape, and migration. Here, we have investigated the function of HA during molar tooth development in mice, in which, similar to humans, new molars sequentially bud off from a pre-existing molar. Using an ex vivo approach, we found that inhibiting HA synthesis in culture leads to a significant increase in proliferation and subsequent size of the developing molar, while the formation of sequential molars was inhibited. By cell shape analysis, we observed that inhibition of HA synthesis caused an elongation and reorientation of the major cell axes, indicating that disruption to cellular orientation and shape may underlie the observed phenotype. Lineage tracing demonstrated the retention of cells in the developing first molar (M1) at the expense of the generation of a second molar (M2). Our results highlight a novel role for HA in controlling proliferation, cell orientation, and migration in the developing tooth, impacting cellular decisions regarding tooth size and number.

8.
Dev Biol ; 458(1): 32-42, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31606342

RESUMO

The complexity of the nervous system requires the coordination of multiple cellular processes during development. Among them, we find boundary formation, axon guidance, cell migration and cell segregation. Understanding how different cell populations such as glial cells, developing neurons and neural stem cells contribute to the formation of boundaries and morphogenesis in the nervous system is a critical question in neurobiology. Slit is an evolutionary conserved protein essential for the development of the nervous system. For signaling, Slit has to bind to its cognate receptor Robo, a single-pass transmembrane protein. Although the Slit/Robo signaling pathway is well known for its involvement in axon guidance, it has also been associated to boundary formation in the Drosophila visual system. In the optic lobe, Slit is expressed in glial cells, positioned at the boundaries between developing neuropils, and in neurons of the medulla ganglia. Although it has been assumed that glial cells provide Slit to the system, the contribution of the neuronal expression has not been tested. Here, we show that, contrary to what was previously thought, Slit protein provided by medulla neurons is also required for boundary formation and morphogenesis of the optic lobe. Furthermore, tissue specific rescue using modified versions of Slit demonstrates that this protein acts at long range and does not require processing by extracellular proteases. Our data shed new light on our understanding of the cellular mechanisms involved in Slit function in the fly visual system morphogenesis.


Assuntos
Orientação de Axônios/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Neurópilo/fisiologia , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Elementos Facilitadores Genéticos , Técnicas de Silenciamento de Genes , Genes Reporter , Estudos de Associação Genética , Larva , Morfogênese , Mutação , Proteínas do Tecido Nervoso/genética , Neuroglia/fisiologia , Neurópilo/citologia , Lobo Óptico de Animais não Mamíferos/citologia , Especificidade de Órgãos , Fenótipo , Estimulação Luminosa , Pupa , Interferência de RNA , Receptores Imunológicos/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Transgenes , Proteínas Roundabout
9.
Front Mol Neurosci ; 12: 140, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31213980

RESUMO

Among all organs of an adult animal, the central nervous system stands out because of its vast complexity and morphological diversity. During early development, the entire central nervous system develops from an apparently homogenous group of progenitors that differentiate into all neural cell types. Therefore, understanding the molecular and genetic mechanisms that give rise to the cellular and anatomical diversity of the brain is a key goal of the developmental neurobiology field. With this aim in mind, the development of the central nervous system of model organisms has been extensively studied. From more than a century, the mechanisms of neurogenesis have been studied in the fruit fly Drosophila melanogaster. The visual system comprises one of the major structures of the Drosophila brain. The visual information is collected by the eye-retina photoreceptors and then processed by the four optic lobe ganglia: the lamina, medulla, lobula and lobula plate. The molecular mechanisms that originate neuronal diversity in the optic lobe have been unveiled in the past decade. In this article, we describe the early development and differentiation of the lobula plate ganglion, from the formation of the optic placode and the inner proliferation center to the specification of motion detection neurons. We focused specifically on how the precise combination of signaling pathways and cell-specific transcription factors patterns the pool of neural stem cells that generates the different neurons of the motion detection system.

10.
Elife ; 82019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30794154

RESUMO

In living organisms, self-organised waves of signalling activity propagate spatiotemporal information within tissues. During the development of the largest component of the visual processing centre of the Drosophila brain, a travelling wave of proneural gene expression initiates neurogenesis in the larval optic lobe primordium and drives the sequential transition of neuroepithelial cells into neuroblasts. Here, we propose that this 'proneural wave' is driven by an excitable reaction-diffusion system involving epidermal growth factor receptor (EGFR) signalling interacting with the proneural gene l'sc. Within this framework, a propagating transition zone emerges from molecular feedback and diffusion. Ectopic activation of EGFR signalling in clones within the neuroepithelium demonstrates that a transition wave can be excited anywhere in the tissue by inducing signalling activity, consistent with a key prediction of the model. Our model illuminates the physical and molecular underpinnings of proneural wave progression and suggests a generic mechanism for regulating the sequential differentiation of tissues.


Assuntos
Diferenciação Celular , Drosophila/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Células Neuroepiteliais/fisiologia , Neurônios/fisiologia , Lobo Óptico de Animais não Mamíferos/embriologia , Animais , Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Receptores de Peptídeos de Invertebrados/metabolismo , Transdução de Sinais
11.
Neural Dev ; 13(1): 25, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30466475

RESUMO

BACKGROUND: Neural stem cells generate all of the neurons and glial cells in the central nervous system, both during development and in the adult to maintain homeostasis. In the Drosophila optic lobe, neuroepithelial cells progress through two transient progenitor states, PI and PII, before transforming into neuroblasts. Here we analyse the role of Notch signalling in the transition from neuroepithelial cells to neuroblasts. RESULTS: We observed dynamic regulation of Notch signalling: strong activity in PI progenitors, low signalling in PII progenitors, and increased activity after neuroblast transformation. Ectopic expression of the Notch ligand Delta induced the formation of ectopic PI progenitors. Interestingly, we show that the E3 ubiquitin ligase, Neuralized, regulates Delta levels and Notch signalling activity at the transition zone. We demonstrate that the proneural transcription factor, Lethal of scute, is essential to induce expression of Neuralized and promote the transition from the PI progenitor to the PII progenitor state. CONCLUSIONS: Our results show dynamic regulation of Notch signalling activity in the transition from neuroepithelial cells to neuroblasts. We propose a model in which Lethal of scute activates Notch signalling in a non-cell autonomous manner by regulating the expression of Neuralized, thereby promoting the progression between different neural stem cell states.


Assuntos
Proteínas de Drosophila/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Lobo Óptico de Animais não Mamíferos/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Animais , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Células-Tronco Neurais/citologia , Células Neuroepiteliais/citologia , Células Neuroepiteliais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Receptores Notch/genética
12.
Sci Rep ; 8(1): 13332, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30190506

RESUMO

Precise control of neurite guidance during development is essential to ensure proper formation of neuronal networks and correct function of the central nervous system (CNS). How neuronal projections find their targets to generate appropriate synapses is not entirely understood. Although transcription factors are key molecules during neurogenesis, we do not know their entire function during the formation of networks in the CNS. Here, we used the Drosophila melanogaster optic lobe as a model for understanding neurite guidance during development. We assessed the function of Sox102F/SoxD, the unique Drosophila orthologue of the vertebrate SoxD family of transcription factors. SoxD is expressed in immature and mature neurons in the larval and adult lobula plate ganglia (one of the optic lobe neuropils), but is absent from glial cells, neural stem cells and progenitors of the lobula plate. SoxD RNAi knockdown in all neurons results in a reduction of the lobula plate neuropil, without affecting neuronal fate. This morphological defect is associated with an impaired optomotor response of adult flies. Moreover, knocking down SoxD only in T4/T5 neuronal types, which control motion vision, affects proper neurite guidance into the medulla and lobula. Our findings suggest that SoxD regulates neurite guidance, without affecting neuronal fate.


Assuntos
Proteínas de Drosophila/metabolismo , Rede Nervosa/metabolismo , Neuritos/metabolismo , Neurópilo/metabolismo , Fatores de Transcrição SOXD/metabolismo , Vias Visuais/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Rede Nervosa/citologia , Neurópilo/citologia , Fatores de Transcrição SOXD/genética , Vias Visuais/citologia
13.
Mech Dev ; 154: 107-115, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29908237

RESUMO

Insect metamorphosis has been a classic model to understand the role of hormones in growth and timing of developmental transitions. In addition to hormones, transitions in some species are regulated by genetic programs, such as the heterochronic gene network discovered in C. elegans. However, the functional link between hormones and heterochronic genes is not clear. The heterochronic gene lin-28 is involved in the maintenance of stem cells, growth and developmental timing in vertebrates. In this work, we used gain-of-function and loss-of-function experiments to study the role of Lin-28 in larval growth and the timing of metamorphosis of Drosophila melanogaster. During the late third instar stage, Lin-28 is mainly expressed in neurons of the central nervous system and in the intestine. Loss-of-function lin-28 mutant larvae are smaller and the larval-to-pupal transition is accelerated. This faster transition correlates with increased levels of ecdysone direct target genes such as Broad-Complex (BR-C) and Ecdysone Receptor (EcR). Overexpression of Lin-28 does not affect the timing of pupariation but most animals are not able to eclose, suggesting defects in metamorphosis. Overexpression of human Lin-28 results in delayed pupariation and the death of animals during metamorphosis. Altogether, these results suggest that Lin-28 is involved in the control of growth during larval development and in the timing and progression of metamorphosis.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Metamorfose Biológica/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Larva/genética , Larva/crescimento & desenvolvimento , Pupa/genética , Pupa/crescimento & desenvolvimento , Receptores de Esteroides/genética , Alinhamento de Sequência
14.
PLoS One ; 13(4): e0194344, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29621246

RESUMO

BACKGROUND: Animal growth is influenced by the genetic background and the environmental circumstances. How genes promote growth and coordinate adaptation to nutrient availability is still an open question. p53 is a transcription factor that commands the cellular response to different types of stresses. In adult Drosophila melanogaster, p53 regulates the metabolic adaptation to nutrient restriction that supports fly viability. Furthermore, the larval brain is protected from nutrient restriction in a phenomenon called 'brain sparing'. Therefore, we hypothesised that p53 may regulate brain growth and show a protective role over brain development under nutrient restriction. RESULTS: Here, we studied the function of p53 during brain growth in normal conditions and in animals subjected to developmental nutrient restriction. We showed that p53 loss of function reduced animal growth and larval brain size. Endogenous p53 was expressed in larval neural stem cells, but its levels and activity were not affected by nutritional stress. Interestingly, p53 knockdown only in neural stem cells was sufficient to decrease larval brain growth. Finally, we showed that in p53 mutant larvae under nutrient restriction, the energy storage levels were not altered, and these larvae generated adults with brains of similar size than wild-type animals. CONCLUSIONS: Using genetic approaches, we demonstrate that p53 is required for proper growth of the larval brain. This developmental role of p53 does not have an impact on animal resistance to nutritional stress since brain growth in p53 mutants under nutrient restriction is similar to control animals.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Drosophila/fisiologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Drosophila/embriologia , Desenvolvimento Embrionário/genética , Metabolismo Energético , Larva , Células-Tronco Neurais , Estresse Fisiológico
15.
Neural Dev ; 7: 13, 2012 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-22537391

RESUMO

BACKGROUND: In contrast to mammals, amphibians, such as adult urodeles (for example, newts) and anuran larvae (for example, Xenopus) can regenerate their spinal cord after injury. However, the cellular and molecular mechanisms involved in this process are still poorly understood. RESULTS: Here, we report that tail amputation results in a global increase of Sox2 levels and proliferation of Sox2(+) cells. Overexpression of a dominant negative form of Sox2 diminished proliferation of spinal cord resident cells affecting tail regeneration after amputation, suggesting that spinal cord regeneration is crucial for the whole process. After spinal cord transection, Sox2(+) cells are found in the ablation gap forming aggregates. Furthermore, Sox2 levels correlated with regenerative capabilities during metamorphosis, observing a decrease in Sox2 levels at non-regenerative stages. CONCLUSIONS: Sox2(+) cells contribute to the regeneration of spinal cord after tail amputation and transection. Sox2 levels decreases during metamorphosis concomitantly with the lost of regenerative capabilities. Our results lead to a working hypothesis in which spinal cord damage activates proliferation and/or migration of Sox2(+) cells, thus allowing regeneration of the spinal cord after tail amputation or reconstitution of the ependymal epithelium after spinal cord transection.


Assuntos
Fatores de Transcrição SOXB1/biossíntese , Traumatismos da Medula Espinal/fisiopatologia , Regeneração da Medula Espinal/fisiologia , Proteínas de Xenopus/biossíntese , Animais , Animais Geneticamente Modificados , Proliferação de Células , Feminino , Larva/fisiologia , Masculino , Fatores de Transcrição SOXB1/genética , Cauda/cirurgia , Proteínas de Xenopus/genética , Xenopus laevis
16.
Development ; 136(17): 2987-96, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19666825

RESUMO

Tail regeneration in Xenopus tadpoles is a favorable model system to understand the molecular and cellular basis of tissue regeneration. Although turnover of the extracellular matrix (ECM) is a key event during tissue injury and repair, no functional studies to evaluate its role in appendage regeneration have been performed. Studying the role of Hyaluronan (HA), an ECM component, is particularly attractive because it can activate intracellular signaling cascades after tissue injury. Here we studied the function of HA and components of the HA pathway in Xenopus tadpole tail regeneration. We found that transcripts for components of this pathway, including Hyaluronan synthase2 (HAS2), Hyaluronidase2 and its receptors CD44 and RHAMM, were transiently upregulated in the regenerative bud after tail amputation. Concomitantly, an increase in HA levels was observed. Functional experiments using 4-methylumbelliferone, a specific HAS inhibitor that blocked the increase in HA levels after tail amputation, and transgenesis demonstrated that the HA pathway is required during the early phases of tail regeneration. Proper levels of HA are required to sustain proliferation of mesenchymal cells in the regenerative bud. Pharmacological and genetic inhibition of GSK3beta was sufficient to rescue proliferation and tail regeneration when HA synthesis was blocked, suggesting that GSK3beta is downstream of the HA pathway. We have demonstrated that HA is an early component of the regenerative pathway and is required for cell proliferation during the early phases of Xenopus tail regeneration. In addition, a crosstalk between HA and GSK3beta signaling during tail regeneration was demonstrated.


Assuntos
Ácido Hialurônico/metabolismo , Larva , Regeneração/fisiologia , Cauda/fisiologia , Xenopus laevis , Animais , Animais Geneticamente Modificados , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Glucuronosiltransferase/antagonistas & inibidores , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Hialuronan Sintases , Ácido Hialurônico/genética , Himecromona/análogos & derivados , Himecromona/metabolismo , Larva/anatomia & histologia , Larva/fisiologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Transdução de Sinais/fisiologia , Cauda/anatomia & histologia , Proteínas de Xenopus/antagonistas & inibidores , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/anatomia & histologia , Xenopus laevis/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...