Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(9): e73953, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023917

RESUMO

Extracellular matrix 1 (ECM1) is over-expressed in multiple epithelial malignancies. However, knowledge regarding the expression of ECM1 in melanomas and the mechanisms of ECM1 regulation is limited. In this study, we found that ECM1 is over-expressed in several melanoma cell lines, when compared to primary melanocytes, and furthermore, that ECM1 expression paralleled that of TFAP2C levels in multiple cell lines. Knockdown of TFAP2C in the A375 cell line with siRNA led to a reduction in ECM1 expression, and upregulation of TFAP2C with adenoviral vectors in the WM793 cell line resulted in ECM1 upregulation. Utilizing 5' RACE to identify transcription start sites (TSS) and luciferase reporter assays in the ECM1-overexpressing A375 cell line, we identified the minimal promoter region of human ECM1 and demonstrate that an approximately 100bp fragment upstream of the TSS containing a TATA box and binding sites for AP1, SP1 and Ets is sufficient for promoter activity. Chromatin immunoprecipitation and direct sequencing (ChIP-seq) for TFAP2C in the A375 cell line identified an AP2 regulatory region in the promoter of the ECM1 gene. Gelshift assays further confirmed binding of TFAP2C to this site. ECM1 knockdown reduces melanoma cell attachment and is consistent with findings that ECM1 overexpression has been associated with a poor prognosis. Our investigations show an as yet unrecognized role for TFAP2C in melanoma via its regulation of ECM1.


Assuntos
Proteínas da Matriz Extracelular/genética , Regulação Neoplásica da Expressão Gênica , Melanoma/patologia , Fator de Transcrição AP-2/metabolismo , Sequência de Bases , Sítios de Ligação , Adesão Celular , Linhagem Celular Tumoral , Humanos , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Sítio de Iniciação de Transcrição
2.
Eur J Pharmacol ; 660(2-3): 268-74, 2011 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-21497598

RESUMO

Cancer invasion and metastasis are the leading causes of mortality in patients with breast cancer. Dehydroepiandrosterone (DHEA) has a protective role against cancer, however, the mechanism by which DHEA has this effect remains poorly understood. The present study was aimed at investigating the actions of DHEA on the proliferation, cell cycle, death and migration of breast cancer cell lines. We used MCF-7 cells (estrogen receptors positive) and MDA-MB-231 and Hs578T cells (estrogen receptors negative) for these studies. Cell proliferation was evaluated by crystal violet staining, cell cycle by flow cytometry, and cell death by the carboxyfluorescein FLICA analysis of caspase activation. Migration was evaluated by transwell cell migration and wound assay. We also determined the expression of ECM-1 protein by western blotting and RT-PCR in real time. DHEA inhibited the proliferation of all breast cancer cell lines. This was associated with an arrest in the G1 phase of the cell cycle and death in MCF-7 cells. There was no alteration in any of the cell cycle phases or death in DHEA treated MDA-MB-231 or Hs578T cells. DHEA also suppressed the migration of all breast cancer cell lines, independently of the presence of estrogen receptors and decreased the expression of ECM-1 protein in Hs578T cells. These results suggest that the mechanism of DHEA actions against breast cancer involves the inhibition of cell proliferation and the suppression of migration, indicating that DHEA could be useful in the treatment of breast cancer.


Assuntos
Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Desidroepiandrosterona/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas da Matriz Extracelular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Receptores de Estrogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...