Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 132(17): 174111, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20459160

RESUMO

We study the microstructure and the effective interactions of model suspensions consisting of Yukawa-like colloidal particles homogeneously distributed in equally spaced parallel planar monolayers. All the particles interact with each other, but particle transfer between monolayers is not allowed. The spacing between the layers defines the effective system dimensionality. When the layer spacing is comparable to the particle size, the system shows quasi-three-dimensional behavior, whereas for large distances the layers behave as effective two-dimensional systems. We find that effective attractions between like-charged particles can be triggered by adjusting the interlayer spacing, showing that the distance between adjacent layers is an excellent control parameter for the effective interparticle interactions. Our study is based on Brownian dynamics simulations and the integral equations theory of liquids. The effective potentials are accounted for by exploiting the invariance of the Ornstein-Zernike matrix equation under contractions of the description, and on assuming that the difference between bare and effective bridge functions can be neglected. We find that the hypernetted chain approximation does not account properly for the effective interactions in layered systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...