Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38592747

RESUMO

The species Senecio nutans Sch. Bip., commonly called "chachacoma", is widely used as a medicinal plant by the Andean communities of Northern Chile. Ethanolic extracts of S. nutans and the main compound, 4-hydroxy-3-(3-methyl-2-butenyl) acetophenone, have shown interesting biological activity. However, due to the high-altitude areas where this species is found, access to S. nutans is very limited. Due to the latter, in this work, we carried out micropropagation in vitro and ex vitro adaptation techniques as an alternative for the massive multiplication, conservation, and in vitro production of high-value metabolites from this plant. The micropropagation and ex vitro adaptation techniques were successfully employed, and UHPLC-DAD analysis revealed no significant changes in the phenolic profile, with acetophenone 4 being the most abundant metabolite, whose antioxidant and antibacterial activity was studied. Independently of the applied culture condition, the ethanolic extracts of S. nutans presented high activity against both Gram-positive and Gram-negative bacteria, demonstrating their antimicrobial capacity. This successful initiation of in vitro and ex vitro cultures provides a biotechnological approach for the conservation of S. nutans and ensures a reliable and consistent source of acetophenone 4 as a potential raw material for pharmacological applications.

2.
Antioxidants (Basel) ; 12(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37507983

RESUMO

Deep eutectic solvents (DES) are emerging as potent polyphenol extractors under normal atmospheric conditions. Yet, their effectiveness in hot pressurized liquid extraction (HPLE) must be studied more. We explored the ability of various water/DES and water/hydrogen bond donors (HBDs) mixtures in both atmospheric solid liquid extraction (ASLE) and HPLE (50%, 90 °C) for isolating specific polyphenol families from Carménère grape pomace. We assessed extraction yields based on total polyphenols, antioxidant capacity, and recovery of targeted polyphenols. The HBDs ethylene glycol and glycerol outperformed DES in atmospheric and pressurized extractions. Ethylene glycol exhibited a higher affinity for phenolic acids and flavonols, while flavanols preferred glycerol. Quantum chemical computations indicated that a high-water content in DES mixtures led to the formation of new hydrogen bonds, thereby reducing polyphenol-solvent interactions. HPLE was found to be superior to ASLE across all tested solvents. The elevated pressure in HPLE has caused significant improvement in the recovery of flavanols (17-89%), phenolic acids (17-1000%), and flavonols (81-258%). Scanning electron microscopy analysis of post-extraction residues suggested that high pressures collapse the plant matrix, thus easing polyphenol release.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...