Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 108(1-1): 014123, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37583186

RESUMO

This work uses the low-dissipation strategy to obtain efficiency at maximum power from a stochastic heat engine performing Carnot-, Stirling- and Ericsson-like cycles at finite time. The heat engine consists of a colloidal particle trapped by optical tweezers, in contact with two thermal baths at different temperatures, namely hot (T_{h}) and cold (T_{c}). The particle dynamics is characterized by a Langevin equation with time-dependent control parameters bounded to a harmonic potential trap. In a low-dissipation approach, the equilibrium properties of the system are required, which in our case, can be calculated through a statelike equation for the mean value 〈x^{2}〉_{eq} coming from a macroscopic expression associated with the Langevin equation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...