Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(33): 15013-15019, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35960875

RESUMO

Heme is an essential cofactor for many human proteins as well as the primary transporter of oxygen in blood. Recent studies have also established heme as a signaling molecule, imparting its effects through binding with protein partners rather than through reactivity of its metal center. However, the comprehensive annotation of such heme-binding proteins in the human proteome remains incomplete. Here, we describe a strategy which utilizes a heme-based photoaffinity probe integrated with quantitative proteomics to map heme-protein interactions across the proteome. In these studies, we identified 350+ unique heme-protein interactions, the vast majority of which were heretofore unknown and consist of targets from diverse functional classes, including transporters, receptors, enzymes, transcription factors, and chaperones. Among these proteins is the immune-related interleukin receptor-associated kinase 1 (IRAK1), where we provide preliminary evidence that heme agonizes its catalytic activity. Our findings should improve the current understanding of heme's regulation as well as its signaling functions and facilitate new insights of its roles in human disease.


Assuntos
Heme , Proteômica , Proteínas de Transporte/metabolismo , Heme/química , Humanos , Ligação Proteica , Proteoma/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
2.
Angew Chem Int Ed Engl ; 60(43): 23232-23240, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34339587

RESUMO

The microbiome has a fundamental impact on the human host's physiology through the production of highly reactive compounds that can lead to disease development. One class of such compounds are carbonyl-containing metabolites, which are involved in diverse biochemical processes. Mass spectrometry is the method of choice for analysis of metabolites but carbonyls are analytically challenging. Herein, we have developed a new chemical biology tool using chemoselective modification to overcome analytical limitations. Two isotopic probes allow for the simultaneous and semi-quantitative analysis at the femtomole level as well as qualitative analysis at attomole quantities that allows for detection of more than 200 metabolites in human fecal, urine and plasma samples. This comprehensive mass spectrometric analysis enhances the scope of metabolomics-driven biomarker discovery. We anticipate that our chemical biology tool will be of general use in metabolomics analysis to obtain a better understanding of microbial interactions with the human host and disease development.


Assuntos
Acetaldeído/análise , Acetona/análise , Aldeídos/análise , Butanonas/análise , Di-Hidroxiacetona/análise , Metabolômica/métodos , Acetaldeído/sangue , Acetaldeído/química , Acetaldeído/urina , Acetamidas/química , Acetona/sangue , Acetona/química , Acetona/urina , Aldeídos/sangue , Aldeídos/química , Aldeídos/urina , Butanonas/sangue , Butanonas/química , Butanonas/urina , Carbono/química , Isótopos de Carbono/química , Di-Hidroxiacetona/sangue , Di-Hidroxiacetona/química , Di-Hidroxiacetona/urina , Fezes/química , Microbioma Gastrointestinal , Humanos , Indicadores e Reagentes/química , Limite de Detecção , Urina/química
3.
J Exp Clin Cancer Res ; 40(1): 225, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233735

RESUMO

BACKGROUND: Genes in the Ras pathway have somatic mutations in at least 60 % of colorectal cancers. Despite activating the same pathway, the BRAF V600E mutation and the prevalent mutations in codon 12 and 13 of KRAS have all been linked to different clinical outcomes, but the molecular mechanisms behind these differences largely remain to be clarified. METHODS: To characterize the similarities and differences between common activating KRAS mutations and between KRAS and BRAF mutations, we used genome editing to engineer KRAS G12C/D/V and G13D mutations in colorectal cancer cells that had their mutant BRAF V600E allele removed and subjected them to transcriptome sequencing, global proteomics and metabolomics analyses. RESULTS: By intersecting differentially expressed genes, proteins and metabolites, we uncovered (i) two-fold more regulated genes and proteins when comparing KRAS to BRAF mutant cells to those lacking Ras pathway mutation, (ii) five differentially expressed proteins in KRAS mutants compared to cells lacking Ras pathway mutation (IFI16, S100A10, CD44, GLRX and AHNAK2) and 6 (CRABP2, FLNA, NXN, LCP1, S100A10 and S100A2) compared to BRAF mutant cells, (iii) 19 proteins expressed differentially in a KRAS mutation specific manner versus BRAF V600E cells, (iv) regulation of the Integrin Linked Kinase pathway by KRAS but not BRAF mutation, (v) regulation of amino acid metabolism, particularly of the tyrosine, histidine, arginine and proline pathways, the urea cycle and purine metabolism by Ras pathway mutations, (vi) increased free carnitine in KRAS and BRAF mutant RKO cells. CONCLUSIONS: This comprehensive integrative -omics analysis confirms known and adds novel genes, proteins and metabolic pathways regulated by mutant KRAS and BRAF signaling in colorectal cancer. The results from the new model systems presented here can inform future development of diagnostic and therapeutic approaches targeting tumors with KRAS and BRAF mutations.


Assuntos
Neoplasias Colorretais/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Fenótipo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
4.
Chem Sci ; 12(22): 7839-7847, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34168837

RESUMO

The use of photo-affinity reagents for the mapping of noncovalent small molecule-protein interactions has become widespread. Recently, several 'fully-functionalized' (FF) chemical tags have been developed wherein a photoactivatable capture group, an enrichment handle, and a functional group for synthetic conjugation to a molecule of interest are integrated into a single modular tag. Diazirine-based FF tags in particular are increasingly employed in chemical proteomic investigations; however, despite routine usage, their relative utility has not been established. Here, we systematically evaluate several diazirine-containing FF tags, including a terminal diazirine analog developed herein, for chemical proteomic investigations. Specifically, we compared the general reactivity of five diazirine tags and assessed their impact on the profiles of various small molecules, including fragments and known inhibitors revealing that such tags can have profound effects on the proteomic profiles of chemical probes. Our findings should be informative for chemical probe design, photo-affinity reagent development, and chemical proteomic investigations.

5.
Cell Chem Biol ; 28(3): 371-393, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33577749

RESUMO

The ID of disease-modifying, chemically accessible targets remains a central priority of modern therapeutic discovery. The phenotypic screening of small-molecule libraries not only represents an attractive approach to identify compounds that may serve as drug leads but also serves as an opportunity to uncover compounds with novel mechanisms of action (MoAs). However, a major bottleneck of phenotypic screens continues to be the ID of pharmacologically relevant target(s) for compounds of interest. The field of chemoproteomics aims to map proteome-wide small-molecule interactions in complex, native systems, and has proved a key technology to unravel the protein targets of pharmacological modulators. In this review, we discuss the application of modern chemoproteomic methods to identify protein targets of phenotypic screening hits and investigate MoAs, with a specific focus on the development of chemoproteomic-enabled compound libraries to streamline target discovery.


Assuntos
Preparações Farmacêuticas/química , Proteômica , Bibliotecas de Moléculas Pequenas/química , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Humanos , Fenótipo
6.
Angew Chem Int Ed Engl ; 59(34): 14342-14346, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32497306

RESUMO

N-Acetyltransferases play critical roles in the deactivation and clearance of xenobiotics, including clinical drugs. NAT2 has been classified as an arylamine N-acetyltransferase that mainly converts aromatic amines, hydroxylamines, and hydrazines. Herein, we demonstrate that the human arylamine N-acetyltransferase NAT2 also acetylates aliphatic endogenous amines. Metabolomic analysis and chemical synthesis revealed increased intracellular concentrations of mono- and diacetylated spermidine in human cell lines expressing the rapid compared to the slow acetylator NAT2 phenotype. The regioselective N8 -acetylation of monoacetylated spermidine by NAT2 answers the long-standing question of the source of diacetylspermidine. We also identified selective acetylation of structurally diverse alkylamine-containing drugs by NAT2, which may contribute to variations in patient responses. The results demonstrate a previously unknown functionality and potential regulatory role for NAT2, and we suggest that this enzyme should be considered for re-classification.


Assuntos
Aminas/metabolismo , Arilamina N-Acetiltransferase/metabolismo , Acetilação , Arilamina N-Acetiltransferase/genética , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Genótipo , Humanos , Cinética , Espectrometria de Massas/métodos
7.
Analyst ; 145(11): 3822-3831, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32393929

RESUMO

Metabolites with ketone or aldehyde functionalities comprise a large proportion of the human metabolome, most notably in the form of sugars. However, these reactive molecules are also generated through oxidative stress or gut microbiota metabolism and have been linked to disease development. The discovery and structural validation of this class of metabolites over the large concentration range found in human samples is crucial to identify their links to pathogenesis. Herein, we have utilized an advanced chemoselective probe methodology alongside bioinformatic analysis to identify carbonyl-metabolites in urine and fecal samples. In total, 99 metabolites were identified in urine samples and the chemical structure for 40 metabolites were unambiguously validated using a co-injection procedure. We also describe the preparation of a metabolite-conjugate library of 94 compounds utilized to efficiently validate these ketones and aldehydes. This method was used to validate 33 metabolites in a pooled fecal sample extract to demonstrate the potential for rapid and efficient metabolite detection over a wide metabolite concentration range. This analysis revealed the presence of six metabolites that have not previously been detected in either sample type. The constructed library can be utilized for straightforward, large-scale, and expeditious analysis of carbonyls in any sample type.


Assuntos
Aldeídos/urina , Fezes/química , Cetonas/urina , Aldeídos/química , Biologia Computacional , Humanos , Cetonas/química , Espectrometria de Massas/métodos , Metaboloma , Metabolômica/métodos , Neoplasias Pancreáticas/urina , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/química
8.
Chem Commun (Camb) ; 55(62): 9080-9083, 2019 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-31287110

RESUMO

New strategies are required for the discovery of unknown bioactive molecules produced by gut microbiota in the human host. Herein, we utilize a chemoselective probe immobilized to magnetic beads for analysis of carbonyls in human fecal samples. We identified 112 metabolites due to femtomole analysis and an increased mass spectrometric sensitivity by up to six orders of magnitude.


Assuntos
Aldeídos/análise , Fezes/química , Microbioma Gastrointestinal/fisiologia , Cetonas/análise , Sondas Moleculares/análise , Sondas Moleculares/química , Aldeídos/metabolismo , Fezes/microbiologia , Feminino , Humanos , Cetonas/metabolismo , Masculino , Sondas Moleculares/síntese química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
9.
Molecules ; 24(7)2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30965582

RESUMO

Sialic acids are a family of acidic monosaccharides often found on the termini of cell surface proteins or lipid glycoconjugates of higher animals. Herein we describe the enzymatic synthesis of the two isotopically labeled sialic acid derivatives d3-X-Gal-α-2,3-Neu5Ac and d3-X-Gal-α-2,3-Neu5Gc. Using deuterium oxide as the reaction solvent, deuterium atoms could be successfully introduced during the enzymatic epimerization and aldol addition reactions when the sialosides were generated. NMR and mass spectrometric analyses confirmed that the resulting sialosides were indeed tri-deuterated. These compounds may be of interest as internal standards in liquid chromatography/mass spectrometric assays for biochemical or clinical studies of sialic acids. This was further exemplified by the use of this tri-deuterated sialosides as internal standards for the quantification of sialic acids in meat and egg samples.


Assuntos
Óxido de Deutério/química , Enzimas/metabolismo , Ácidos Siálicos/biossíntese , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Oxo-Ácido-Liases/metabolismo , Racemases e Epimerases/metabolismo , Ácidos Siálicos/química
10.
Bioorg Med Chem ; 27(6): 955-962, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30738652

RESUMO

Sulfatases hydrolyze sulfated metabolites to their corresponding alcohols and are present in all domains of life. These enzymes have found major application in metabolic investigation of drugs, doping control analysis and recently in metabolomics. Interest in sulfatases has increased due to a link between metabolic processes involving sulfated metabolites and pathophysiological conditions in humans. Herein, we present the first comprehensive substrate specificity and kinetic analysis of the most commonly used arylsulfatase extracted from the snail Helix pomatia. In the past, this enzyme has been used in the form of a crude mixture of enzymes, however, recently we have purified this sulfatase for a new application in metabolomics-driven discovery of sulfated metabolites. To evaluate the substrate specificity of this promiscuous sulfatase, we have synthesized a series of new sulfated metabolites of diverse structure and employed a mass spectrometric assay for kinetic substrate hydrolysis evaluation. Our analysis of the purified enzyme revealed that the sulfatase has a strong preference for metabolites with a bi- or tricyclic aromatic scaffold and to a lesser extent for monocyclic aromatic phenols. This metabolite library and mass spectrometric method can be applied for the characterization of other sulfatases from humans and gut microbiota to investigate their involvement in disease development.


Assuntos
Arilsulfatases/metabolismo , Caracois Helix/enzimologia , Animais , Caracois Helix/metabolismo , Hidrólise , Cinética , Espectrometria de Massas , Especificidade por Substrato
11.
Angew Chem Int Ed Engl ; 57(42): 13805-13809, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30168889

RESUMO

While metabolites derived from gut microbiota metabolism have been linked to disease development in the human host, the chemical tools required for their detailed analysis and the discovery of biomarkers are limited. A unique and multifunctional chemical probe for mass spectrometric analysis, which contains p-nitrocinnamyloxycarbonyl as a new bioorthogonal cleavage site has been designed and synthesized. Coupled to magnetic beads, this chemical probe allows for straightforward extraction of metabolites from human samples and release under mild conditions. This isolation from the sample matrix results in significantly reduced ion suppression, an increased mass spectrometric sensitivity, and facilitates the detection of metabolites in femtomole quantities. The chemoselective probe was applied to the analysis of human fecal samples, resulting in the discovery of four metabolites previously unreported in this sample type and confirmation of the presence of medically relevant gut microbiota-derived metabolites.


Assuntos
Microbioma Gastrointestinal , Sondas Moleculares/química , Cromatografia Líquida/métodos , Humanos , Magnetismo , Espectrometria de Massas/métodos
12.
Chem Sci ; 9(29): 6233-6239, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30090311

RESUMO

Gut microbiota significantly impact human physiology through metabolic interaction. Selective investigation of the co-metabolism of bacteria and their human host is a challenging task and methods for their analysis are limited. One class of metabolites associated with this co-metabolism are O-sulfated compounds. Herein, we describe the development of a new enzymatic assay for the selective mass spectrometric investigation of this phase II modification class. Analysis of human urine and fecal samples resulted in the detection of 206 sulfated metabolites, which is three times more than reported in the Human Metabolome Database. We confirmed the chemical structure of 36 sulfated metabolites including unknown and commonly reported microbiota-derived sulfated metabolites using synthesized internal standards and mass spectrometric fragmentation experiments. Our findings demonstrate that enzymatic sample pre-treatment combined with state-of-the-art metabolomics analysis represents a new and efficient strategy for the discovery of unknown microbiota-derived metabolites in human samples. Our described approach can be adapted for the targeted investigation of other metabolite classes as well as the discovery of biomarkers for diseases affected by microbiota.

13.
Glycobiology ; 28(5): 261-268, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29506202

RESUMO

Within human biology, combinations of regioisomeric motifs of α2,6- or α2,3-sialic acids linked to galactose are frequently observed attached to glycoconjugates. These include glycoproteins and glycolipids, with each linkage carrying distinct biological information and function. Microbial linkage-specific sialidases have become important tools for studying the role of these sialosides in complex biological settings, as well as being used as biocatalysts for glycoengineering. However, currently, there is no α2,6-specific sialidase available. This gap has been addressed herein by exploiting the ability of a Photobacterium sp. α2,6-sialyltransferase to catalyze trans-sialidation reversibly and in a highly linkage-specific manner, acting as a pseudosialidase in the presence of cytidine monophosphate. Selective, near quantitative removal of α2,6-linked sialic acids was achieved from a wide range of sialosides including small molecules conjugates, simple glycan, glycopeptide and finally complex glycoprotein including both linkages.


Assuntos
Neuraminidase/metabolismo , Ácidos Siálicos/metabolismo , Galactose/química , Galactose/metabolismo , Glicoconjugados/química , Glicoconjugados/metabolismo , Glicolipídeos/química , Glicolipídeos/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Cinética , Salmonella typhimurium/enzimologia , Ácidos Siálicos/química
14.
J Vis Exp ; (125)2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28745640

RESUMO

CMAH (cytidine monophosphate-N-acetylneuraminic acid hydroxylase) is responsible for the oxidation of cytidine monophosphate-N-acetylneuraminic acids in mammals. However, humans cannot oxidize cytidine monophosphate-N-acetylneuraminic acid to cytidine monophosphate-N-glycolylneuraminic acid due to a primary exon deletion of the CMAH gene. To understand the effects and implications of the lack of CMAH activity in more detail, a Cmah knock-out model in mice is of keen interest in basic and applied research. The analysis method to determine the phenotype of this mouse model is herein described in detail, and is based on the detection of both N-acetylneuraminic acid and N-glycolylenuraminic acid in the liver and milk of wild-type and Cmah knock-out mice. Endogenous sialic acids are released and derivatized with o-phenylenediamine to generate fluorogenic derivatives, which can be subsequently analyzed by HPLC. The presented protocol can be also applied for the analysis of milk and tissue samples from various other origins, and may be of use to investigate the nutritional and health effects of N-glycolylneuraminic acid.


Assuntos
Cromatografia Líquida de Alta Pressão , Fígado/química , Leite/química , Oxigenases de Função Mista/genética , Ácidos Siálicos/análise , Animais , Sistemas CRISPR-Cas/genética , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigenases de Função Mista/deficiência , Ácidos Siálicos/isolamento & purificação , Gravação em Vídeo
15.
Beilstein J Org Chem ; 13: 87-92, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28179952

RESUMO

Vibration ball-milling in a zirconia-lined vessel afforded clean and quantitative nucleophilic displacement reactions between 4-methoxybenzylthiolate salts and nucleoside 5'-halides or 5'-tosylates in five to 60 minutes. Under these conditions, commonly-encountered nucleoside cyclisation byproducts (especially of purine nucleosides) were not observed. Liquid-assisted grinding of the same 5'-iodide and 5'-tosylate substrates with potassium selenocyanate in the presence of DMF produced the corresponding 5'-selenocyanates in variable yields over the course of between one and eleven hours thereby avoiding the preparation and use of hygroscopic tetrabutylammonium salts.

16.
Org Biomol Chem ; 14(30): 7361-7, 2016 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-27417455

RESUMO

A 3'-N,5'-S-bridging thiophosphoramidate analogue of thymidylyl-3',5'-thymidine was synthesised under aqueous conditions. (1)H NMR conformational measurements show that the 3'-N-substituted deoxyribose ring is biased towards the 'north', RNA-like conformation. Rate constants for hydrolysis of the analogue were measured at 90 °C in the pH range 1.3-10.9. The pH-log kobs profile displays a pH-independent region between approximately pH 7 and 10 (t1/2 ∼13 days). Under acidic conditions, kobs displays a first order dependence on [H3O(+)].


Assuntos
Fosfatos de Dinucleosídeos/química , Compostos Organofosforados/química , Cromatografia Líquida de Alta Pressão/métodos , Desoxirribose/análogos & derivados , Desoxirribose/química , Fosfatos de Dinucleosídeos/síntese química , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Espectroscopia de Ressonância Magnética , Conformação Molecular , Compostos Organofosforados/síntese química
17.
Carbohydr Res ; 432: 23-30, 2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27351442

RESUMO

Anomeric sugar kinases perform fundamental roles in the metabolism of carbohydrates. Under- or overexpression of these enzymes, or mutations causing functional impairments can give rise to diseases such as galactosaemia and so the study of this class of kinase is of critical importance. In addition, anomeric sugar kinases which are naturally promiscuous, or have been artificially made so, may find application in the synthesis of libraries of drug candidates (for example, antibiotics), and natural or unnatural oligosaccharides and glycoconjugates. In this review, we provide an overview of the biological functions of these enzymes, the tools which have been developed to investigate them, and the current frontiers in their study.


Assuntos
Carboidratos/química , Galactoquinase/metabolismo , Hexoquinase/metabolismo , Animais , Bactérias/enzimologia , Domínio Catalítico , Ativação Enzimática , Fungos/enzimologia , Galactoquinase/química , Hexoquinase/química , Humanos , Especificidade por Substrato
18.
Glycoconj J ; 33(2): 219-26, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26969460

RESUMO

Herein we describe a UPLC-FLD-based method for the quantification of the sialic acid content of red meat, using a synthetic neuraminic acid derivative as an internal standard. X-Gal-α-2,6-N-propionylneuraminic acid was synthesized via a chemoenzymatic pathway and its hydrolytic stability was characterized. Known quantities of this compound were incubated with samples of red meat under sialic acid-releasing conditions. The released sialic acids were derivatized, analyzed by UPLC-FLD, and the Neu5Ac/Neu5Gc content of the meat sample was determined by comparison with the internal standard. A number of red meats were analyzed by this method with the following results (Neu5Ac µg/g tissue, Neu5Gc µg/g tissue ± s.d.): pork (68 ± 3, 15.2 ± 0.7), beef (69 ± 8, 36 ± 5), lamb (46 ± 2, 33 ± 1), rabbit (59 ± 2, 0.4 ± 0.4), and hare (50 ± 4, 1 ± 1). We envisage that this methodology will find application in investigating the health effects of dietary Neu5Gc. Graphical abstract ᅟ.


Assuntos
Análise de Alimentos/métodos , Carne/análise , Ácido N-Acetilneuramínico/análise , Animais , Bovinos , Coelhos
19.
Org Biomol Chem ; 14(4): 1201-5, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26565694

RESUMO

Michaelis-Arbuzov reactions of S-aryl disulfide derivatives of 3'-thiothymidine or 5'-thioadenosine with tris(trimethylsilyl) phosphite proceeded in high yields to the corresponding phosphorothiolate monoesters. Subsequent hydrolytic desilylation and phosphate coupling were effected in one-pot using liquid-assisted grinding in a vibration ball mill. Novel 3',5'- and 5',5'-pyrophosphorothiolate-linked dinucleoside cap analogues were thereby prepared.


Assuntos
Nucleotídeos/síntese química , Compostos Organofosforados/síntese química , Compostos de Sulfidrila/síntese química , Estrutura Molecular , Nucleotídeos/química , Compostos Organofosforados/química , Compostos de Sulfidrila/química
20.
Curr Opin Chem Biol ; 21: 63-72, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24879389

RESUMO

Phosphoryl group transfer is central to genetic replication, cellular signalling and many metabolic processes. Understanding the mechanisms of phosphorylation and phosphate ester and anhydride cleavage is key to efforts towards biotechnological and biomedical exploitation of phosphate-handling enzymes. Analogues of phosphate esters and anhydrides are indispensable tools, alongside protein mutagenesis and computational methods, for the dissection of phosphoryl transfer mechanisms. Hydrolysable and non-hydrolysable phosphate analogues have provided insight into the nature and sites of phosphoryl transfer processes. Kinetic isotope effects and crystallography using transition state analogues have painted more detailed pictures of transition states and how enzymes work to stabilise them.


Assuntos
Fosfatos/química , Fosfatos/metabolismo , Domínio Catalítico , Enzimas/química , Enzimas/metabolismo , Humanos , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...