Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990653

RESUMO

The Neurofibromatosis Type 1 (NF1) RASopathy is associated with persistent fibrotic nonunions (pseudarthrosis) in human and mouse skeletal tissue. Here, we first performed spatial transcriptomics to define the molecular signatures across normal endochondral healing following fracture in mice. Within the control fracture callus, we observed spatially restricted activation of morphogenetic pathways, such as TGF-ß, WNT, and BMP. To investigate the molecular mechanisms contributing to Nf1-deficient delayed fracture healing, we performed spatial transcriptomic analysis on a Postn-cre;Nf1flox/- (Nf1Postn) fracture callus. Transcriptional analyses, subsequently confirmed through p-SMAD1/5/8 immunohistochemistry, demonstrated a lack of BMP pathway induction in Nf1Postn mice. To further inform the human disease, we performed spatial transcriptomic analysis of fracture pseudarthrosis tissue from a NF1 patient. Analyses detected increased MAPK signaling at the fibrocartilaginous-osseus junction. Similar to the Nf1Postn fracture, BMP pathway activation was absent within the pseudarthrosis tissue. Our results demonstrate the feasibility to delineate the molecular and tissue-specific heterogeneity inherent in complex regenerative processes, such as fracture healing, and to reconstruct phase transitions representing endochondral bone formation in vivo. Furthermore, our results provide in situ molecular evidence of impaired BMP signaling underlying NF1 pseudarthrosis, potentially informing the clinical relevance of off-label BMP2 as a therapeutic intervention.

2.
Circ Res ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899461

RESUMO

BACKGROUND: Cardiac fibroblast activation contributes to adverse remodeling, fibrosis, and dysfunction in the pressure-overloaded heart. Although early fibroblast TGF-ß (transforming growth factor-ß)/Smad (small mother against decapentaplegic)-3 activation protects the pressure-overloaded heart by preserving the matrix, sustained TGF-ß activation is deleterious, accentuating fibrosis and dysfunction. Thus, endogenous mechanisms that negatively regulate the TGF-ß response in fibroblasts may be required to protect from progressive fibrosis and adverse remodeling. We hypothesized that Smad7, an inhibitory Smad that restrains TGF-ß signaling, may be induced in the pressure-overloaded myocardium and may regulate fibrosis, remodeling, and dysfunction. METHODS: The effects of myofibroblast-specific Smad7 loss were studied in a mouse model of transverse aortic constriction, using echocardiography, histological analysis, and molecular analysis. Proteomic studies in S7KO (Smad7 knockout) and overexpressing cells were used to identify fibroblast-derived mediators modulated by Smad7. In vitro experiments using cultured cardiac fibroblasts, fibroblasts populating collagen lattices, and isolated macrophages were used to dissect the molecular signals responsible for the effects of Smad7. RESULTS: Following pressure overload, Smad7 was upregulated in cardiac myofibroblasts. TGF-ß and angiotensin II stimulated fibroblast Smad7 upregulation via Smad3, whereas GDF15 (growth differentiation factor 15) induced Smad7 through GFRAL (glial cell line-derived neurotrophic factor family receptor α-like). MFS7KO (myofibroblast-specific S7KO) mice had increased mortality, accentuated systolic dysfunction and dilative remodeling, and accelerated diastolic dysfunction in response to transverse aortic constriction. Increased dysfunction in MFS7KO hearts was associated with accentuated fibrosis and increased MMP (matrix metalloproteinase)-2 activity and collagen denaturation. Secretomic analysis showed that Smad7 loss accentuates secretion of structural collagens and matricellular proteins and markedly increases MMP2 secretion. In contrast, Smad7 overexpression reduced MMP2 levels. In fibroblasts populating collagen lattices, the effects of Smad7 on fibroblast-induced collagen denaturation and pad contraction were partly mediated via MMP2 downregulation. Surprisingly, MFS7KO mice also exhibited significant macrophage expansion caused by paracrine actions of Smad7 null fibroblasts that stimulate macrophage proliferation and fibrogenic activation. Macrophage activation involved the combined effects of the fibroblast-derived matricellular proteins CD5L (CD5 antigen-like), SPARC (secreted protein acidic and rich in cysteine), CTGF (connective tissue growth factor), ECM1 (extracellular matrix protein 1), and TGFBI (TGFB induced). CONCLUSIONS: The antifibrotic effects of Smad7 in the pressure-overloaded heart protect from dysfunction and involve not only reduction in collagen deposition but also suppression of MMP2-mediated matrix denaturation and paracrine effects that suppress macrophage activation through inhibition of matricellular proteins.

3.
ESC Heart Fail ; 11(1): 167-178, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37872863

RESUMO

AIMS: Transforming growth factor ß (TGF-ß) signalling is one of the critical pathways in fibroblast activation, and several drugs targeting the TGF-ß/Smad signalling pathway in heart failure with cardiac fibrosis are being tested in clinical trials. Some caveolins and cavins, which are components of caveolae on the plasma membrane, are known for their association with the regulation of TGF-ß signalling. Cavin-2 is particularly abundant in fibroblasts; however, the detailed association between Cavin-2 and cardiac fibrosis is still unclear. We tried to clarify the involvement and role of Cavin-2 in fibroblasts and cardiac fibrosis. METHODS AND RESULTS: To clarify the role of Cavin-2 in cardiac fibrosis, we performed transverse aortic constriction (TAC) operations on four types of mice: wild-type (WT), Cavin-2 null (Cavin-2 KO), Cavin-2flox/flox , and activated fibroblast-specific Cavin-2 conditional knockout (Postn-Cre/Cavin-2flox/flox , Cavin-2 cKO) mice. We collected mouse embryonic fibroblasts (MEFs) from WT and Cavin-2 KO mice and investigated the effect of Cavin-2 in fibroblast trans-differentiation into myofibroblasts and associated TGF-ß signalling. Four weeks after TAC, cardiac fibrotic areas in both the Cavin-2 KO and the Cavin-2 cKO mice were significantly decreased compared with each control group (WT 8.04 ± 1.58% vs. Cavin-2 KO 0.40 ± 0.03%, P < 0.01; Cavin-2flox/flox , 7.19 ± 0.50% vs. Cavin-2 cKO 0.88 ± 0.44%, P < 0.01). Fibrosis-associated mRNA expression (Col1a1, Ctgf, and Col3) was significantly attenuated in the Cavin-2 KO mice after TAC. α1 type I collagen deposition and non-vascular αSMA-positive cells (WT 43.5 ± 2.4% vs. Cavin-2 KO 25.4 ± 3.2%, P < 0.01) were reduced in the heart of the Cavin-2 cKO mice after TAC operation. The levels of αSMA protein (0.36-fold, P < 0.05) and fibrosis-associated mRNA expression (Col1a1, 0.69-fold, P < 0.01; Ctgf, 0.27-fold, P < 0.01; Col3, 0.60-fold, P < 0.01) were decreased in the Cavin-2 KO MEFs compared with the WT MEFs. On the other hand, αSMA protein levels were higher in the Cavin-2 overexpressed MEFs compared with the control MEFs (2.40-fold, P < 0.01). TGF-ß1-induced Smad2 phosphorylation was attenuated in the Cavin-2 KO MEFs compared with WT MEFs (0.60-fold, P < 0.01). Heat shock protein 90 protein levels were significantly reduced in the Cavin-2 KO MEFs compared with the WT MEFs (0.69-fold, P < 0.01). CONCLUSIONS: Cavin-2 loss suppressed fibroblast trans-differentiation into myofibroblasts through the TGF-ß/Smad signalling. The loss of Cavin-2 in cardiac fibroblasts suppresses cardiac fibrosis and may maintain cardiac function.


Assuntos
Cardiomiopatias , Fibroblastos , Animais , Camundongos , Miofibroblastos/metabolismo , Fibrose , Cardiomiopatias/patologia , Fator de Crescimento Transformador beta/metabolismo , Transdiferenciação Celular , RNA Mensageiro/metabolismo
4.
Cell Death Dis ; 14(7): 446, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468478

RESUMO

MicroRNA-150 (miR-150) is conserved between rodents and humans, is significantly downregulated during heart failure (HF), and correlates with patient outcomes. We previously reported that miR-150 is protective during myocardial infarction (MI) in part by decreasing cardiomyocyte (CM) apoptosis and that proapoptotic small proline-rich protein 1a (Sprr1a) is a direct CM target of miR-150. We also showed that Sprr1a knockdown in mice improves cardiac dysfunction and fibrosis post-MI and that Sprr1a is upregulated in pathological mouse cardiac fibroblasts (CFs) from ischemic myocardium. However, the direct functional relationship between miR-150 and SPRR1A during both post-MI remodeling in mice and human CF (HCF) activation was not established. Here, using a novel miR-150 knockout;Sprr1a-hypomorphic (Sprr1ahypo/hypo) mouse model, we demonstrate that Sprr1a knockdown blunts adverse post-MI effects caused by miR-150 loss. Moreover, HCF studies reveal that SPRR1A is upregulated in hypoxia/reoxygenation-treated HCFs and is downregulated in HCFs exposed to the cardioprotective ß-blocker carvedilol, which is inversely associated with miR-150 expression. Significantly, we show that the protective roles of miR-150 in HCFs are directly mediated by functional repression of profibrotic SPRR1A. These findings delineate a pivotal functional interaction between miR-150 and SPRR1A as a novel regulatory mechanism pertinent to CF activation and ischemic HF.


Assuntos
MicroRNAs , Infarto do Miocárdio , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibrose , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Remodelação Ventricular/genética
5.
Cell Rep ; 42(1): 111933, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36610396

RESUMO

Atopic dermatitis (AD) is a chronic relapsing skin disease accompanied by recurrent itching. Although type 2 inflammation is dominant in allergic skin inflammation, it is not fully understood how non-type 2 inflammation co-exists with type 2 inflammation or how type 2 inflammation causes itching. We have recently established the FADS mouse, a mouse model of AD. In FADS mice, either genetic disruption or pharmacological inhibition of periostin, a downstream molecule of type 2 inflammation, inhibits NF-κB activation in keratinocytes, leading to downregulating eczema, epidermal hyperplasia, and infiltration of neutrophils, without regulating the enhanced type 2 inflammation. Moreover, inhibition of periostin blocks spontaneous firing of superficial dorsal horn neurons followed by a decrease in scratching behaviors due to itching. Taken together, periostin links NF-κB-mediated inflammation with type 2 inflammation and promotes itching in allergic skin inflammation, suggesting that periostin is a promising therapeutic target for AD.


Assuntos
Dermatite Atópica , Pele , Animais , Camundongos , Pele/metabolismo , NF-kappa B/metabolismo , Queratinócitos/metabolismo , Prurido/metabolismo , Dermatite Atópica/etiologia , Inflamação/metabolismo
7.
Cell Death Discov ; 8(1): 504, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585403

RESUMO

The ß1-adrenergic receptor (ß1AR) is found primarily in hearts (mainly in cardiomyocytes [CMs]) and ß-arrestin-mediated ß1AR signaling elicits cardioprotection through CM survival. We showed that microRNA-150 (miR-150) is upregulated by ß-arrestin-mediated ß1AR signaling and that CM miR-150 inhibits maladaptive remodeling post-myocardial infarction. Here, we investigate whether miR-150 rescues cardiac dysfunction in mice bearing CM-specific abrogation of ß-arrestin-mediated ß1AR signaling. Using CM-specific transgenic (TG) mice expressing a mutant ß1AR (G protein-coupled receptor kinase [GRK]-ß1AR that exhibits impairment in ß-arrestin-mediated ß1AR signaling), we first generate a novel double TG mouse line overexpressing miR-150. We demonstrate that miR-150 is sufficient to improve cardiac dysfunction in CM-specific GRK-ß1AR TG mice following chronic catecholamine stimulation. Our genome-wide circular RNA, long noncoding RNA (lncRNA), and mRNA profiling analyses unveil a subset of cardiac ncRNAs and genes as heretofore unrecognized mechanisms for beneficial actions of ß1AR/ß-arrestin signaling or miR-150. We further show that lncRNA Gm41664 and GDAP1L1 are direct novel upstream and downstream regulators of miR-150. Lastly, CM protective actions of miR-150 are attributed to repressing pro-apoptotic GDAP1L1 and are mitigated by pro-apoptotic Gm41664. Our findings support the idea that miR-150 contributes significantly to ß1AR/ß-arrestin-mediated cardioprotection by regulating unique ncRNA and gene signatures in CMs.

8.
J Dev Biol ; 10(2)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35645295

RESUMO

Pax3 and Pax7 transcription factors are paralogs within the Pax gene family that that are expressed in early embryos in partially overlapping expression domains and have distinct functions. Significantly, mammalian development is largely unaffected by Pax7 systemic deletion but systemic Pax3 deletion results in defects in neural tube closure, neural crest emigration, cardiac outflow tract septation, muscle hypoplasia and in utero lethality by E14. However, we previously demonstrated that Pax3 hypomorphs expressing only 20% functional Pax3 protein levels exhibit normal neural tube and heart development, but myogenesis is selectively impaired. To determine why only some Pax3-expressing cell lineages are affected and to further titrate Pax3 threshold levels required for neural tube and heart development, we generated hypomorphs containing both a hypomorphic and a null Pax3 allele. This resulted in mutants only expressing 10% functional Pax3 protein with exacerbated neural tube, neural crest and muscle defects, but still a normal heart. To examine why the cardiac neural crest appears resistant to very low Pax3 levels, we examined its paralog Pax7. Significantly, Pax7 expression is both ectopically expressed in Pax3-expressing dorsal neural tube cells and is also upregulated in the Pax3-expressing lineages. To test whether this compensatory Pax7 expression is functional, we deleted Pax7 both systemically and lineage-specifically in hypomorphs expressing only 10% Pax3. Removal of one Pax7 allele resulted in partial outflow tract defects, and complete loss of Pax7 resulted in full penetrance outflow tract defects and in utero lethality. Moreover, combinatorial loss of Pax3 and Pax7 resulted in severe craniofacial defects and a total block of neural crest cell emigration from the neural tube. Pax7Cre lineage mapping revealed ectopic labeling of Pax3-derived neural crest tissues and within the outflow tract of the heart, experimentally confirming the observation of ectopic activation of Pax7 in 10% Pax3 hypomorphs. Finally, genetic cell ablation of Pax7Cre-marked cells is sufficient to cause outflow tract defects in hypomorphs expressing only 10% Pax3, confirming that ectopic and induced Pax7 can play an overlapping functional genetic compensational role in both cardiac neural crest lineage and during craniofacial development, which is normally masked by the dominant role of Pax3.

9.
Respirology ; 27(7): 529-538, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35318760

RESUMO

BACKGROUND AND OBJECTIVE: Remodelling of pulmonary arteries (PA) contributes to the progression of pulmonary hypertension (PH). Periostin, a matricellular protein, has been reported to be involved in the development of PH. We examined the role of periostin in the pathogenesis of PH using different types of experimental PH. METHODS: PH was induced by vascular endothelial growth factor receptor antagonist (Sugen5416) plus hypoxic exposure (SuHx) and venous injection of monocrotaline-pyrrole (MCT-P) in wild-type (WT) and periostin-/- mice. Pulmonary haemodynamics, PA remodelling, expression of chemokines and fibroblast growth factor (FGF)-2, accumulation of macrophages to small PA and the right ventricle (RV) were examined in PH-induced WT and periostin-/- mice. Additionally, the role of periostin in the migration of macrophages, human PA smooth muscle (HPASMCs) and endothelial cells (HPMVECs) was investigated. RESULTS: In PH induced by SuHx and MCT-P, PH and accumulation of M2 macrophage to small PA were attenuated in periostin-/- mice. PA remodelling post-SuHx treatment was also mild in periostin-/- mice compared to WT mice. Expression of macrophage-associated chemokines and FGF-2 in lung tissue, and accumulation of CD68-positive cells in the RV were less in SuHx periostin-/- than in SuHx WT mice. Periostin secretion in HPASMCs and HPMVECs was enhanced by transforming growth factor-ß. Periostin also augmented macrophage, HPASMCs and HPMVECs migration. Separately, serum periostin levels were significantly elevated in patients with PH compared to healthy controls. CONCLUSION: Periostin is involved in the development of different types of experimental PH, and may also contribute to the pathogenesis of human PH.


Assuntos
Moléculas de Adesão Celular , Fator 2 de Crescimento de Fibroblastos , Hipertensão Pulmonar , Macrófagos , Animais , Moléculas de Adesão Celular/genética , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Artéria Pulmonar/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
J Clin Invest ; 132(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34905511

RESUMO

Repair of the infarcted heart requires TGF-ß/Smad3 signaling in cardiac myofibroblasts. However, TGF-ß-driven myofibroblast activation needs to be tightly regulated in order to prevent excessive fibrosis and adverse remodeling that may precipitate heart failure. We hypothesized that induction of the inhibitory Smad, Smad7, may restrain infarct myofibroblast activation, and we examined the molecular mechanisms of Smad7 actions. In a mouse model of nonreperfused infarction, Smad3 activation triggered Smad7 synthesis in α-SMA+ infarct myofibroblasts, but not in α-SMA-PDGFRα+ fibroblasts. Myofibroblast-specific Smad7 loss increased heart failure-related mortality, worsened dysfunction, and accentuated fibrosis in the infarct border zone and in the papillary muscles. Smad7 attenuated myofibroblast activation and reduced synthesis of structural and matricellular extracellular matrix proteins. Smad7 effects on TGF-ß cascades involved deactivation of Smad2/3 and non-Smad pathways, without any effects on TGF-ß receptor activity. Unbiased transcriptomic and proteomic analysis identified receptor tyrosine kinase signaling as a major target of Smad7. Smad7 interacted with ErbB2 in a TGF-ß-independent manner and restrained ErbB1/ErbB2 activation, suppressing fibroblast expression of fibrogenic proteases, integrins, and CD44. Smad7 induction in myofibroblasts serves as an endogenous TGF-ß-induced negative feedback mechanism that inhibits postinfarction fibrosis by restraining Smad-dependent and Smad-independent TGF-ß responses, and by suppressing TGF-ß-independent fibrogenic actions of ErbB2.


Assuntos
Insuficiência Cardíaca/metabolismo , Infarto do Miocárdio/metabolismo , Miofibroblastos/metabolismo , Receptor ErbB-2/metabolismo , Proteína Smad7/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/genética , Camundongos , Camundongos Knockout , Infarto do Miocárdio/complicações , Infarto do Miocárdio/genética , Receptor ErbB-2/genética , Proteína Smad7/genética , Fator de Crescimento Transformador beta/genética
11.
Cell Rep ; 37(11): 110103, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34910918

RESUMO

Hematopoietic stem cells (HSCs) emerge during development from the vascular wall of the main embryonic arteries. The onset of circulation triggers several processes that provide critical external factors for HSC generation. Nevertheless, it is not fully understood how and when the onset of circulation affects HSC emergence. Here we show that in Ncx1-/- mouse embryos devoid of circulation the HSC lineage develops until the phenotypic pro-HSC stage. However, these cells reside in an abnormal microenvironment, fail to activate the hematopoietic program downstream of Runx1, and are functionally impaired. Single-cell transcriptomics shows that during the endothelial-to-hematopoietic transition, Ncx1-/- cells fail to undergo a glycolysis to oxidative phosphorylation metabolic switch present in wild-type cells. Interestingly, experimental activation of glycolysis results in decreased intraembryonic hematopoiesis. Our results suggest that the onset of circulation triggers metabolic changes that allow HSC generation to proceed.


Assuntos
Diferenciação Celular , Linhagem da Célula , Endotélio Vascular/patologia , Glicólise , Hematopoese , Células-Tronco Hematopoéticas/patologia , Trocador de Sódio e Cálcio/fisiologia , Animais , Endotélio Vascular/metabolismo , Feminino , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação Oxidativa , Análise de Célula Única , Transcriptoma
12.
Sci Signal ; 14(704): eabe4932, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34637330

RESUMO

Heart failure is a major public health problem, and inflammation is involved in its pathogenesis. Inflammatory Ly6Chi monocytes accumulate in mouse hearts after pressure overload and are detrimental to the heart; however, the types of cells that drive inflammatory cell recruitment remain uncertain. Here, we showed that a distinct subset of mouse cardiac fibroblasts became activated by pressure overload and recruited Ly6Chi monocytes to the heart. Single-cell sequencing analysis revealed that a subset of cardiac fibroblasts highly expressed genes transcriptionally activated by the transcription factor NF-κB, as well as C-C motif chemokine ligand 2 (Ccl2) mRNA, which encodes a major factor in Ly6Chi monocyte recruitment. The deletion of the NF-κB activator IKKß in activated cardiac fibroblasts attenuated Ly6Chi monocyte recruitment and preserved cardiac function in mice subjected to pressure overload. Pseudotime analysis indicated two single-branch trajectories from quiescent fibroblasts into inflammatory fibroblasts and myofibroblasts. Our results provide insight into the mechanisms underlying cardiac inflammation and fibroblast-mediated inflammatory responses that could be therapeutically targeted to treat heart failure.


Assuntos
Monócitos , NF-kappa B , Animais , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais
13.
Physiol Rep ; 9(17): e15013, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34523259

RESUMO

BACKGROUND: Both downregulation and elevation of microRNA miR-145 has been linked to an array of cardiopulmonary phenotypes, and a host of studies suggest that it is an important contributor in governing the differentiation of cardiac and vascular smooth muscle cell types. METHODS AND RESULTS: To better understand the role of elevated miR-145 in utero within the cardiopulmonary system, we utilized a transgene to overexpress miR-145 embryonically in mice and examined the consequences of this lineage-restricted enhanced expression. Overexpression of miR-145 has detrimental effects that manifest after birth as overexpressor mice are unable to survive beyond postnatal day 18. The miR-145 expressing mice exhibit respiratory distress and fail to thrive. Gross analysis revealed an enlarged right ventricle, and pulmonary dysplasia with vascular hypertrophy. Single cell sequencing of RNA derived from lungs of control and miR-145 transgenic mice demonstrated that miR-145 overexpression had global effects on the lung with an increase in immune cells and evidence of leukocyte extravasation associated with vascular inflammation. CONCLUSIONS: These data provide novel findings that demonstrate a pathological role for miR-145 in the cardiopulmonary system that extends beyond its normal function in governing smooth muscle differentiation.


Assuntos
Parada Cardíaca/metabolismo , Parada Cardíaca/mortalidade , MicroRNAs/biossíntese , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Parada Cardíaca/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Mortalidade Prematura , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia
14.
Elife ; 102021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34355692

RESUMO

Amino-terminal acetylation is catalyzed by a set of N-terminal acetyltransferases (NATs). The NatA complex (including X-linked Naa10 and Naa15) is the major acetyltransferase, with 40-50% of all mammalian proteins being potential substrates. However, the overall role of amino-terminal acetylation on a whole-organism level is poorly understood, particularly in mammals. Male mice lacking Naa10 show no globally apparent in vivo amino-terminal acetylation impairment and do not exhibit complete embryonic lethality. Rather Naa10 nulls display increased neonatal lethality, and the majority of surviving undersized mutants exhibit a combination of hydrocephaly, cardiac defects, homeotic anterior transformation, piebaldism, and urogenital anomalies. Naa12 is a previously unannotated Naa10-like paralog with NAT activity that genetically compensates for Naa10. Mice deficient for Naa12 have no apparent phenotype, whereas mice deficient for Naa10 and Naa12 display embryonic lethality. The discovery of Naa12 adds to the currently known machinery involved in amino-terminal acetylation in mice.


Assuntos
Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/genética , Acetilação , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Acetiltransferase N-Terminal A/deficiência , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/deficiência , Acetiltransferase N-Terminal E/metabolismo
15.
Cells ; 10(8)2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34440898

RESUMO

BACKGROUND & AIMS: Liver fibrosis is a pathological healing process resulting from hepatic stellate cell (HSC) activation and the generation of myofibroblasts from activated HSCs. The precise underlying mechanisms of liver fibrogenesis are still largely vague due to lack of understanding the functional heterogeneity of activated HSCs during liver injury. Approach and Results: In this study, to define the mechanism of HSC activation, we performed the transcriptomic analysis at single-cell resolution (scRNA-seq) on HSCs in mice treated with carbon tetrachloride (CCl4). By employing LRAT-Cre:Rosa26mT/mG mice, we were able to isolate an activated GFP-positive HSC lineage derived cell population by fluorescence-activated cell sorter (FACS). A total of 8 HSC subpopulations were identified based on an unsupervised analysis. Each HSC cluster displayed a unique transcriptomic profile, despite all clusters expressing common mouse HSC marker genes. We demonstrated that one of the HSC subpopulations expressed high levels of mitosis regulatory genes, velocity, and monocle analysis indicated that these HSCs are at transitioning and proliferating phases at the beginning of HSCs activation and will eventually give rise to several other HSC subtypes. We also demonstrated cell clusters representing HSC-derived mature myofibroblast populations that express myofibroblasts hallmark genes with unique contractile properties. Most importantly, we found a novel HSC cluster that is likely to be critical in liver regeneration, immune reaction, and vascular remodeling, in which the unique profiles of genes such as Rgs5, Angptl6, and Meg3 are highly expressed. Lastly, we demonstrated that the heterogeneity of HSCs in the injured mouse livers is closely similar to that of cirrhotic human livers. CONCLUSIONS: Collectively, our scRNA-seq data provided insight into the landscape of activated HSC populations and the dynamic transitional pathway from HSC to myofibroblasts in response to liver injury.


Assuntos
Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Componente Principal , Análise de Célula Única , Transcriptoma/genética
16.
J Dev Biol ; 9(2)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199485

RESUMO

For this Special Issue "2020 Feature Papers by JDB' Editorial Board Members," we present a collection of studies, including original research papers, and review articles by our distinguished editorial board members that focus on advances in understanding multicellular organisms' growth, differentiation, and remodeling [...].

17.
Dev Biol ; 476: 173-188, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33839113

RESUMO

Mouse models of Spina bifida (SB) have been instrumental for identifying genes, developmental processes, and environmental factors that influence neurulation and neural tube closure. Beyond the prominent neural tube defects, other aspects of the nervous system can be affected in SB with significant changes in essential bodily functions such as urination. SB patients frequently experience bladder dysfunction and SB fetuses exhibit reduced density of bladder nerves and smooth muscle although the developmental origins of these deficits have not been determined. The Pax3 Splotch-delayed (Pax3Sp-d) mouse model of SB is one of a very few mouse SB models that survives to late stages of gestation. Through analysis of Pax3Sp-d mutants we sought to define how altered bladder innervation in SB might arise by tracing sacral neural crest (NC) development, pelvic ganglia neuronal differentiation, and assessing bladder nerve fiber density. In Pax3Sp-d/Sp-d fetal mice we observed delayed migration of Sox10+ NC-derived progenitors (NCPs), deficient pelvic ganglia neurogenesis, and reduced density of bladder wall innervation. We further combined NC-specific deletion of Pax3 with the constitutive Pax3Sp-d allele in an effort to generate viable Pax3 mutants to examine later stages of bladder innervation and postnatal bladder function. Neural crest specific deletion of a Pax3 flox allele, using a Sox10-cre driver, in combination with a constitutive Pax3Sp-d mutation produced postnatal viable offspring that exhibited altered bladder function as well as reduced bladder wall innervation and altered connectivity between accessory ganglia at the bladder neck. Combined, the results show that Pax3 plays critical roles within sacral NC that are essential for initiation of neurogenesis and differentiation of autonomic neurons within pelvic ganglia.


Assuntos
Crista Neural/inervação , Fator de Transcrição PAX3/genética , Bexiga Urinária/inervação , Animais , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Feminino , Gânglios , Masculino , Camundongos/embriologia , Camundongos Endogâmicos C57BL , Sistema Nervoso/embriologia , Crista Neural/fisiologia , Defeitos do Tubo Neural/genética , Neurogênese , Fator de Transcrição PAX3/fisiologia , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição SOXE , Região Sacrococcígea/inervação , Disrafismo Espinal/complicações , Disrafismo Espinal/genética , Bexiga Urinária/embriologia
18.
Basic Res Cardiol ; 116(1): 26, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33876316

RESUMO

Heart failure due to high blood pressure or ischemic injury remains a major problem for millions of patients worldwide. Despite enormous advances in deciphering the molecular mechanisms underlying heart failure progression, the cell-type specific adaptations and especially intercellular signaling remain poorly understood. Cardiac fibroblasts express high levels of cardiogenic transcription factors such as GATA-4 and GATA-6, but their role in fibroblasts during stress is not known. Here, we show that fibroblast GATA-4 and GATA-6 promote adaptive remodeling in pressure overload induced cardiac hypertrophy. Using a mouse model with specific single or double deletion of Gata4 and Gata6 in stress activated fibroblasts, we found a reduced myocardial capillarization in mice with Gata4/6 double deletion following pressure overload, while single deletion of Gata4 or Gata6 had no effect. Importantly, we confirmed the reduced angiogenic response using an in vitro co-culture system with Gata4/6 deleted cardiac fibroblasts and endothelial cells. A comprehensive RNA-sequencing analysis revealed an upregulation of anti-angiogenic genes upon Gata4/6 deletion in fibroblasts, and siRNA mediated downregulation of these genes restored endothelial cell growth. In conclusion, we identified a novel role for the cardiogenic transcription factors GATA-4 and GATA-6 in heart fibroblasts, where both proteins act in concert to promote myocardial capillarization and heart function by directing intercellular crosstalk.


Assuntos
Cardiomegalia/metabolismo , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Fator de Transcrição GATA4/metabolismo , Fator de Transcrição GATA6/metabolismo , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Neovascularização Fisiológica , Remodelação Ventricular , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/metabolismo , Animais , Aorta/fisiopatologia , Aorta/cirurgia , Pressão Arterial , Cardiomegalia/etiologia , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Comunicação Celular , Células Cultivadas , Constrição , Modelos Animais de Doenças , Fibroblastos/patologia , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA6/genética , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Humanos , Camundongos Knockout , Densidade Microvascular , Miocárdio/patologia , Transdução de Sinais
19.
Basic Res Cardiol ; 116(1): 10, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33564961

RESUMO

We have previously demonstrated that systemic AMP-activated protein kinase α1 (AMPKα1) invalidation enhanced adverse LV remodelling by increasing fibroblast proliferation, while myodifferentiation and scar maturation were impaired. We thus hypothesised that fibroblastic AMPKα1 was a key signalling element in regulating fibrosis in the infarcted myocardium and an attractive target for therapeutic intervention. The present study investigates the effects of myofibroblast (MF)-specific deletion of AMPKα1 on left ventricular (LV) adaptation following myocardial infarction (MI), and the underlying molecular mechanisms. MF-restricted AMPKα1 conditional knockout (cKO) mice were subjected to permanent ligation of the left anterior descending coronary artery. cKO hearts exhibit exacerbated post-MI adverse LV remodelling and are characterised by exaggerated fibrotic response, compared to wild-type (WT) hearts. Cardiac fibroblast proliferation and MF content significantly increase in cKO infarcted hearts, coincident with a significant reduction of connexin 43 (Cx43) expression in MFs. Mechanistically, AMPKα1 influences Cx43 expression by both a transcriptional and a post-transcriptional mechanism involving miR-125b-5p. Collectively, our data demonstrate that MF-AMPKα1 functions as a master regulator of cardiac fibrosis and remodelling and might constitute a novel potential target for pharmacological anti-fibrotic applications.


Assuntos
Proteínas Quinases Ativadas por AMP/deficiência , Conexina 43/metabolismo , Infarto do Miocárdio/enzimologia , Miocárdio/enzimologia , Miofibroblastos/enzimologia , Função Ventricular Esquerda , Remodelação Ventricular , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proliferação de Células , Conexina 43/genética , Modelos Animais de Doenças , Feminino , Fibrose , Deleção de Genes , Células HEK293 , Humanos , Masculino , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Miofibroblastos/patologia , Transdução de Sinais
20.
J Mol Cell Cardiol ; 155: 125-137, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33130150

RESUMO

AIMS: One unaddressed aspect of healing after myocardial infarction (MI) is how non-myocyte cells that survived the ischemic injury, keep withstanding additional cellular damage by stress forms typically arising during the post-infarction inflammation. Here we aimed to determine if cell survival is conferred by expression of a mitochondrial protein novel to the cardiac proteome, known as steroidogenic acute regulatory protein, (StAR/STARD1). Further studies aimed to unravel the regulation and role of the non-steroidogenic cardiac StAR after MI. METHODS AND RESULTS: Following permanent ligation of the left anterior descending coronary artery in mouse heart, timeline western blot analyses showed that StAR expression corresponds to the inflammatory response to MI. Following the identification of StAR in mitochondria of cardiac fibroblasts in culture, confocal microscopy immunohistochemistry (IHC) identified StAR expression in left ventricular (LV) activated interstitial fibroblasts, adventitial fibroblasts and endothelial cells. Further work with the primary fibroblasts model revealed that interleukin-1α (IL-1α) signaling via NF-κB and p38 MAPK pathways efficiently upregulates the expression of the Star gene products. At the functional level, IL-1α primed fibroblasts were protected against apoptosis when exposed to cisplatin mimicry of in vivo apoptotic stress; yet, the protective impact of IL-1α was lost upon siRNA mediated StAR downregulation. At the physiological level, StAR expression was nullified during post-MI inflammation in a mouse model with global IL-1α deficiency, concomitantly resulting in a 4-fold elevation of apoptotic fibroblasts. Serial echocardiography and IHC studies of mice examined 24 days after MI revealed aggravation of LV dysfunction, LV dilatation, anterior wall thinning and adverse tissue remodeling when compared with loxP control hearts. CONCLUSIONS: This study calls attention to overlooked aspects of cellular responses evolved under the stress conditions associated with the default inflammatory response to MI. Our observations suggest that LV IL-1α is cardioprotective, and at least one mechanism of this action is mediated by induction of StAR expression in border zone fibroblasts, which renders them apoptosis resistant. This acquired survival feature also has long-term ramifications on the heart recovery by diminishing adverse remodeling and improving the heart function after MI.


Assuntos
Fibroblastos/metabolismo , Regulação da Expressão Gênica , Interleucina-1alfa/metabolismo , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Fosfoproteínas/genética , Remodelação Ventricular/genética , Animais , Apoptose/genética , Biomarcadores , Células Cultivadas , Citocinas/sangue , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Imunofluorescência , Interleucina-1alfa/genética , Masculino , Camundongos , Camundongos Knockout , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Fosfoproteínas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...