Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroimaging ; 34(4): 466-474, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38858847

RESUMO

BACKGROUND AND PURPOSE: Conclusions from prior literature regarding the impact of sex, age, and height on spinal cord (SC) MRI morphometrics are conflicting, while the effect of body weight on SC morphometrics has been found to be nonsignificant. The purpose of this case-control study is to assess the associations between cervical SC MRI morphometric parameters and age, sex, height, and weight to establish their potential role as confounding variables in a clinical study of people with multiple sclerosis (MS) compared to a cohort of healthy volunteers. METHODS: Sixty-nine healthy volunteers and 31 people with MS underwent cervical SC MRI at 3 Tesla field strength. Images were centered at the C3/C4 intervertebral disc and processed using Spinal Cord Toolbox v.4.0.2. Mixed-effects linear regression models were used to evaluate the effects of biological variables and disease status on morphometric parameters. RESULTS: Sex, age, and height had significant effects on cord and gray matter (GM) cross-sectional area (CSA) as well as the GM:cord CSA ratio. There were no significant effects of body weight on morphometric parameters. The effect of MS disease duration on cord CSA in the C4 level was significant when controlling for all other variables. CONCLUSIONS: Studies of disease-related changes in SC morphometry should control for sex, age, and height to account for physiological variation.


Assuntos
Medula Cervical , Imageamento por Ressonância Magnética , Esclerose Múltipla , Humanos , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Adulto , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Medula Cervical/diagnóstico por imagem , Medula Cervical/patologia , Pessoa de Meia-Idade , Vértebras Cervicais/diagnóstico por imagem , Adulto Jovem , Estudos de Casos e Controles , Valores de Referência
2.
Front Neurol ; 13: 764690, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35299614

RESUMO

Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) can probe tissue biochemistry in vivo with high resolution and sensitivity without requiring exogenous contrast agents. Applying CEST MRI at ultrahigh field provides advantages of increasing spectral resolution and improving sensitivity to metabolites with faster proton exchange rates such as glutamate, a critical neurotransmitter in the brain. Prior magnetic resonance spectroscopy and CEST MRI studies have revealed altered regulation of glutamate in patients with multiple sclerosis (MS). While CEST imaging facilitates new strategies for investigating the pathology underlying this complex and heterogeneous neurological disease, CEST signals are contaminated or diluted by concurrent effects (e.g., semi-solid magnetization transfer (MT) and direct water saturation) and are scaled by the T1 relaxation time of the free water pool which may also be altered in the context of disease. In this study of 20 relapsing-remitting MS patients and age- and sex-matched healthy volunteers, glutamate-weighted CEST data were acquired at 7.0 T. A Lorentzian fitting procedure was used to remove the asymmetric MT contribution from CEST z-spectra, and the apparent exchange-dependent relaxation (AREX) correction was applied using an R1 map derived from an inversion recovery sequence to further isolate glutamate-weighted CEST signals from concurrent effects. Associations between AREX and cognitive function were examined using the Minimal Assessment of Cognitive Function in MS battery. After isolating CEST effects from MT, direct water saturation, and T1 effects, glutamate-weighted AREX contrast remained higher in gray matter than in white matter, though the difference between these tissues decreased. Glutamate-weighted AREX in normal-appearing gray and white matter in MS patients did not differ from healthy gray and white matter but was significantly elevated in white matter lesions. AREX in some cortical regions and in white matter lesions correlated with disability and measures of cognitive function in MS patients. However, further studies with larger sample sizes are needed to confirm these relationships due to potential confounding effects. The application of MT and AREX corrections in this study demonstrates the importance of isolating CEST signals for more specific characterization of the contribution of metabolic changes to tissue pathology and symptoms in MS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...