Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuromuscul Disord ; 33(8): 677-691, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37400349

RESUMO

Congenital hypomyelinating polyneuropathy (HPN) restricted to the peripheral nervous system was reported in 1989 in two Golden Retriever (GR) littermates. Recently, four additional cases of congenital HPN in young, unrelated GRs were diagnosed via neurological examination, electrodiagnostic evaluation, and peripheral nerve pathology. Whole-genome sequencing was performed on all four GRs, and variants from each dog were compared to variants found across >1,000 other dogs, all presumably unaffected with HPN. Likely causative variants were identified for each HPN-affected GR. Two cases shared a homozygous splice donor site variant in MTMR2, with a stop codon introduced within six codons following the inclusion of the intron. One case had a heterozygous MPZ isoleucine to threonine substitution. The last case had a homozygous SH3TC2 nonsense variant predicted to truncate approximately one-half of the protein. Haplotype analysis using 524 GR established the novelty of the identified variants. Each variant occurs within genes that are associated with the human Charcot-Marie-Tooth (CMT) group of heterogeneous diseases, affecting the peripheral nervous system. Testing a large GR population (n = >200) did not identify any dogs with these variants. Although these variants are rare within the general GR population, breeders should be cautious to avoid propagating these alleles.


Assuntos
Doença de Charcot-Marie-Tooth , Polineuropatias , Humanos , Animais , Cães , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/veterinária , Doença de Charcot-Marie-Tooth/patologia , Proteínas/genética , Heterozigoto , Polineuropatias/genética , Polineuropatias/veterinária , Alelos , Mutação , Proteínas Tirosina Fosfatases não Receptoras/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína P0 da Mielina/genética
2.
Sci Rep ; 13(1): 1486, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707633

RESUMO

Gram-negative bacterial septicemia is mediated through binding of lipopolysaccharide (LPS) to mammalian toll-like receptor protein 4 (TLR4). TLR4 and its cognate protein, myeloid differentiation factor 2 (MD2) form a heterodimeric complex after binding LPS. This complex induces a cascade of reactions that results in increased proinflammatory cytokine gene expression, including TNFα, which leads to activation of innate immunity. In horses, the immune response to LPS varies widely. To determine if this variation is due to differences in TLR4 or MD2, DNA from 15 healthy adult horses with different TNFα dynamics after experimental intravenous LPS infusion was sequenced across exons of TLR4 and MD2. Haplotypes were constructed for both genes using all identified variants. Four haplotypes were observed for each gene. No significant associations were found between either TNFα baseline concentrations or response to LPS and haplotype; however, there was a significant association (P value = 0.0460) between the baseline TNFα concentration and one MD2 missense variant. Three-dimensional structures of the equine TLR4-MD2-LPS complex were built according to haplotype combinations observed in the study horses, and the implications of missense variants on LPS binding were modeled. Although the sample size was small, there was no evidence that variation in TLR4 or MD2 explains the variability in TNFα response observed after LPS exposure in horses.


Assuntos
Lipopolissacarídeos , Receptor 4 Toll-Like , Animais , Cavalos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Antígeno 96 de Linfócito/metabolismo , Receptores Toll-Like/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Mamíferos/metabolismo
3.
Genes (Basel) ; 13(12)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36553444

RESUMO

Fluoroquinolones are a widely used class of chemotherapeutics within veterinary medicine, prized for their broad-spectrum bactericidal activity. These drugs present a known risk of retinal phototoxicity in domestic cats (Felis catus); therefore, using lower doses and alternative antibiotic classes is encouraged in this species. This adverse drug effect of fluoroquinolones, and enrofloxacin specifically, has been determined to be species-specific in domestic felids. Four feline-specific missense variants in ABCG2 result in four amino acid changes (E159M, S279L, H283Q, and T644I) that are unique to the domestic cat compared with multiple other nonfeline mammalian species. These changes alter the ABCG2 protein involved with the cellular transmembrane transport of drugs, including fluoroquinolones, making the protein functionally defective in domestic cats. The predisposition to fluoroquinolone-mediated phototoxicity in nondomestic felids was explored in this study. At least eight nondomestic felids share the four ABCG2 missense variants with domestic cats, and eleven other felids shared at least three of the four domestic cat variants. Taken together, these results suggest the genetic potential for nondomestic felids to also experience fluoroquinolone-induced retinal phototoxicity; therefore, cautions similar to those for domestic cats should be followed for these drugs in the entire feline taxon.


Assuntos
Felidae , Fluoroquinolonas , Animais , Gatos , Fluoroquinolonas/efeitos adversos , Antibacterianos/efeitos adversos , Retina
4.
J Biol Chem ; 281(25): 17001-17010, 2006 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-16606626

RESUMO

Schistosoma mansoni, a causative agent of schistosomiasis, resides in the hepatic portal circulation of their human host up to 30 years without being eliminated by the host immune attack. Production of an antioxidant "firewall," which would neutralize the oxidative assault generated by host immune defenses, is one proposed survival mechanism of the parasite. Schistosomes lack catalase, the main H2O2-neutralizing enzyme of many organisms, and their glutathione peroxidases are in the phospholipid class with poor reactivity toward H2O2. Evidence implicates peroxiredoxins (Prx) as providing the main enzymatic activity to reduce H2O2 in the parasite. Quantitative monitoring of Prx mRNAs during parasite life cycle indicated that Prx proteins are differentially expressed, with highest expression occurring in adult stages (oxidative resistant stages). Incubation of schistosomula with Prx1 double-stranded RNA knocked down total Prx enzymatic activity and resulted in lowered survival of cultured parasites compared with controls demonstrating that Prx are essential parasite proteins. These results represent the first report of lethal gene silencing in Schistosoma. Investigation of downstream effects of Prx silencing revealed an abrupt increase of lipid peroxides and the generation of several oxidized proteins. Using mass spectrometry, parasite albumin and actin were identified as the main oxidized proteins. Gene expression analysis showed that schistosome albumin was induced by oxidative stress. This study highlights Prx proteins as essential parasite proteins and potential new targets for anti-schistosome drug development and albumin as a novel, sacrificial oxidant scavenging protein in parasite redox regulation.


Assuntos
Albuminas/química , Oxirredução , Peroxidases/metabolismo , Schistosoma mansoni/metabolismo , Sequência de Aminoácidos , Animais , Antioxidantes/química , Sequência de Bases , Glutationa Peroxidase/química , Peróxido de Hidrogênio/química , Peroxidação de Lipídeos , Dados de Sequência Molecular , Estresse Oxidativo , Peroxirredoxinas , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...