Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Insect Sci ; 55: 101005, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36702302

RESUMO

We applied a systematic global literature survey from the last 2.5 years on spatiotemporal population dynamics - broadly defined - of Lepidopteran forest pests. Articles were summarized according to domain-specific (planetary ecology - remote sensing, evolutionary ecology - genetics and genomics, and theoretical ecology - modeling) contributions to contemporary investigation of the above theme. 'Model systems' dominating our literature survey were native Choristoneura fumiferana and invasive Lymantria dispar. These systems represent opposing ends of a more general equilibrium-disequilibrium gradient, with implications for less-studied taxa. The dynamics of Lepidopteran systems defy simple modeling approaches. Technologies and insights emerging from 'slower' science domains are informing more complex theory, including predictions of spread, impacts, or both posed by more recent invasions and the disrupting effects of climate change.


Assuntos
Mariposas , Animais , Ecologia , Florestas , Dinâmica Populacional , Mudança Climática
2.
Insects ; 13(11)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36354835

RESUMO

Leaf-rollers and tent caterpillars, the families Torticidae and Lasiocampidae, represent a significant component of the Lepidoptera, and are well-represented in the forest insect pest literature of North America. Two species in particular-spruce budworm (Choristoneura fumiferana (Clem.)) and forest tent caterpillar (Malacosoma disstria Hbn.)-are the most significant pests of the Pinaceae and Salicacae, respectively, in the boreal forest of Canada, each exhibiting periodic outbreaks of tremendous extent. Dispersal is thought to play a critical role in the triggering of population eruptions and in the synchronization of outbreak cycling, but formal studies of dispersal, in particular studies of long-range dispersal by egg-bearing adult females, are rare. Here, it is shown in two independent studies that adult females of both species tend to disperse away from sparse or defoliated forest, and toward intact or undefoliated forest, suggesting that long-range dispersal during an outbreak peak is adaptive to the species and an important factor in their population dynamics, and hence their evolutionary biology.

3.
Environ Entomol ; 45(4): 790-801, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27209334

RESUMO

Through their influence on effective population sizes, sex ratio skew affects population dynamics. We examined spatial variation in female-biased sex ratios in the mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak in western Canada to better understand how environmental context affects sex ratio skew. Our specific objectives were to: 1) characterize spatial variation in mountain pine beetle sex ratio; 2) test previously asserted hypotheses that beetle sex ratio varies with tree diameter and year in outbreak; and 3) develop predictive models of sex ratio skew for larval and adult populations. Using logistic regression, we modeled the probability that an individual beetle (n = 2,369) was female as a function of multiple environmental variables across 34 stands in British Columbia and Alberta, Canada. We identified a consistent female-biased sex ratio with significantly greater skew in adults (2:1, n = 713) than in larvae (1.76:1, n = 1,643). We found that the proportion of larval females increased with decreasing tree size and with outbreak age. However, adults did not respond to tree size and larvae did not respond to outbreak age. Predictive models differed between larvae and adults. All identified models perform well and included predictors related to weather, tree diameter, and year in outbreak. Female-biased sex ratios appear to originate from differential male mortality during development rather than from sex-biased oviposition, suggesting sex ratio skew is not the cause of outbreaks, but rather a consequence.


Assuntos
Clima , Ecossistema , Modelos Biológicos , Razão de Masculinidade , Árvores/crescimento & desenvolvimento , Gorgulhos/fisiologia , Alberta , Animais , Colúmbia Britânica , Feminino , Controle de Insetos/métodos , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Dinâmica Populacional , Gorgulhos/crescimento & desenvolvimento
4.
Glob Chang Biol ; 22(4): 1595-607, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26511654

RESUMO

Climate change will modify forest pest outbreak characteristics, although there are disagreements regarding the specifics of these changes. A large part of this variability may be attributed to model specifications. As a case study, we developed a consensus model predicting spruce budworm (SBW, Choristoneura fumiferana [Clem.]) outbreak duration using two different predictor data sets and six different correlative methods. The model was used to project outbreak duration and the uncertainty associated with using different data sets and correlative methods (=model-specification uncertainty) for 2011-2040, 2041-2070 and 2071-2100, according to three forcing scenarios (RCP 2.6, RCP 4.5 and RCP 8.5). The consensus model showed very high explanatory power and low bias. The model projected a more important northward shift and decrease in outbreak duration under the RCP 8.5 scenario. However, variation in single-model projections increases with time, making future projections highly uncertain. Notably, the magnitude of the shifts in northward expansion, overall outbreak duration and the patterns of outbreaks duration at the southern edge were highly variable according to the predictor data set and correlative method used. We also demonstrated that variation in forcing scenarios contributed only slightly to the uncertainty of model projections compared with the two sources of model-specification uncertainty. Our approach helped to quantify model-specification uncertainty in future forest pest outbreak characteristics. It may contribute to sounder decision-making by acknowledging the limits of the projections and help to identify areas where model-specification uncertainty is high. As such, we further stress that this uncertainty should be strongly considered when making forest management plans, notably by adopting adaptive management strategies so as to reduce future risks.


Assuntos
Florestas , Lepidópteros , Modelos Teóricos , Árvores , Animais , Canadá , Clima , Mudança Climática , Incerteza
6.
Tree Physiol ; 34(11): 1220-39, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24319029

RESUMO

Conifers exhibit a number of constitutive and induced mechanisms to defend against attack by pests and pathogens such as mountain pine beetle (Dendroctonus ponderosae Hopkins) and their fungal associates. Ecological studies have demonstrated that stressed trees are more susceptible to attack by mountain pine beetle than their healthy counterparts. In this study, we tested the hypothesis that water deficit affects constitutive and induced responses of mature lodgepole pine × jack pine hybrids (Pinus contorta Dougl. ex Loud. var. latifolia Engelm. ex S. Wats. × Pinus banksiana Lamb.) to inoculation with the mountain pine beetle fungal associate Grosmannia clavigera (Robinson-Jeffrey and Davidson) Zipfel, de Beer and Wingfield. The degree of stress induced by the imposed water-deficit treatment was sufficient to reduce photosynthesis. Grosmannia clavigera-induced lesions exhibited significantly reduced dimensions in water-deficit trees relative to well-watered trees at 5 weeks after inoculation. Treatment-associated cellular-level changes in secondary phloem were also observed. Quantitative RT-PCR was used to analyze transcript abundance profiles of 18 genes belonging to four families classically associated with biotic and abiotic stress responses: aquaporins (AQPs), dehydration-responsive element binding (DREB), terpene synthases (TPSs) and chitinases (CHIs). Transcript abundance profiles of a TIP2 AQP and a TINY-like DREB decreased significantly in fungus-inoculated trees, but not in response to water deficit. One TPS, Pcb(+)-3-carene synthase, and the Class II CHIs PcbCHI2.1 and PcbCHI2.2 showed increased expression under water-deficit conditions in the absence of fungal inoculation, while another TPS, Pcb(E)-ß-farnesene synthase-like, and two CHIs, PcbCHI1.1 and PcbCHI4.1, showed attenuated expression under water-deficit conditions in the presence of fungal inoculation. The effects were observed both locally and systemically. These results demonstrate that both constitutive and induced carbon- and nitrogen-based defenses are affected by water deficit, suggesting potential consequences for mountain pine beetle dynamics, particularly in novel environments.


Assuntos
Besouros/microbiologia , Interações Hospedeiro-Patógeno , Ophiostomatales/fisiologia , Pinus/fisiologia , Doenças das Plantas/microbiologia , Água/metabolismo , Alquil e Aril Transferases/genética , Animais , Sequência de Bases , Carbono/metabolismo , Quimera , Quitinases/genética , Desidratação , Meio Ambiente , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Floema , Fotossíntese/fisiologia , Pinus/citologia , Pinus/genética , Pinus/microbiologia , Análise de Sequência de DNA
7.
Mol Ecol ; 20(10): 2157-71, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21457381

RESUMO

The current epidemic of the mountain pine beetle (MPB), an indigenous pest of western North American pine, has resulted in significant losses of lodgepole pine. The leading edge has reached Alberta where forest composition shifts from lodgepole to jack pine through a hybrid zone. The susceptibility of jack pine to MPB is a major concern, but there has been no evidence of host-range expansion, in part due to the difficulty in distinguishing the parentals and their hybrids. We tested the utility of a panel of microsatellite loci optimized for both species to classify lodgepole pine, jack pine and their hybrids using simulated data. We were able to accurately classify simulated individuals, and hence applied these markers to identify the ancestry of attacked trees. Here we show for the first time successful MPB attack in natural jack pine stands at the leading edge of the epidemic. This once unsuitable habitat is now a novel environment for MPB to exploit, a potential risk which could be exacerbated by further climate change. The consequences of host-range expansion for the vast boreal ecosystem could be significant.


Assuntos
Besouros/fisiologia , Pinus/parasitologia , Árvores/parasitologia , Animais , Genótipo , Interações Hospedeiro-Patógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...