Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 14(1): 90-103, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-37861452

RESUMO

The tumor-associated antigen STEAP1 is a potential therapeutic target that is expressed in most prostate tumors and at increased levels in metastatic castration-resistant prostate cancer (mCRPC). We developed a STEAP1-targeted XmAb 2+1 T-cell engager (TCE) molecule, AMG 509 (also designated xaluritamig), that is designed to redirect T cells to kill prostate cancer cells that express STEAP1. AMG 509 mediates potent T cell-dependent cytotoxicity of prostate cancer cell lines in vitro and promotes tumor regression in xenograft and syngeneic mouse models of prostate cancer in vivo. The avidity-driven activity of AMG 509 enables selectivity for tumor cells with high STEAP1 expression compared with normal cells. AMG 509 is the first STEAP1 TCE to advance to clinical testing, and we report a case study of a patient with mCRPC who achieved an objective response on AMG 509 treatment. SIGNIFICANCE: Immunotherapy in prostate cancer has met with limited success due to the immunosuppressive microenvironment and lack of tumor-specific targets. AMG 509 provides a targeted immunotherapy approach to engage a patient's T cells to kill STEAP1-expressing tumor cells and represents a new treatment option for mCRPC and potentially more broadly for prostate cancer. See related commentary by Hage Chehade et al., p. 20. See related article by Kelly et al., p. 76. This article is featured in Selected Articles from This Issue, p. 5.


Assuntos
Anticorpos Biespecíficos , Neoplasias de Próstata Resistentes à Castração , Masculino , Camundongos , Animais , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Linfócitos T , Imunoterapia , Anticorpos Biespecíficos/uso terapêutico , Microambiente Tumoral , Antígenos de Neoplasias , Oxirredutases/uso terapêutico
2.
J Immunother Cancer ; 11(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37164449

RESUMO

BACKGROUND: Checkpoint inhibitors targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) have demonstrated clinical efficacy in advanced melanoma, but only a subset of patients with inflamed tumors are responsive. Talimogene laherparepvec (T-VEC), a modified herpes simplex virus type 1 (HSV-1) expressing granulocyte-macrophage colony-stimulating factor (GM-CSF), is a first-in-class oncolytic immunotherapy approved for the treatment of melanoma and has been shown to inflame the tumor microenvironment. To evaluate the potential and mechanisms of T-VEC to elicit systemic antitumor immunity and overcome resistance to checkpoint inhibitors in murine tumor models, OncoVEXmGM-CSF was developed similarly to T-VEC, except the human GM-CSF transgene was replaced with murine GM-CSF. Previous work had demonstrated that OncoVEXmGM-CSF generated systemic antitumor immunity dependent on CD8+ T cells in an immune checkpoint-sensitive tumor cell model. METHODS: A novel B16F10 syngeneic tumor model with both HSV-1-permissive subcutaneous tumors and HSV-1-refractory experimental lung metastasis was used to study the local and systemic effects of OncoVEXmGM-CSF treatment alone or in combination with checkpoint inhibitors. RESULTS: Intratumoral injection of OncoVEXmGM-CSF in combination with an anti-CTLA-4 or anti-PD-1 blocking antibody led to increased tumor growth inhibition, a reduction in the number of lung metastases, and prolonged animal survival. OncoVEXmGM-CSF induced both neoantigen-specific and tumor antigen-specific T-cell responses. Furthermore, cured mice from the combination treatment of OncoVEXmGM-CSF and anti-CTLA-4 antibody rejected tumor rechallenges. CONCLUSIONS: These data support the concept that T-VEC and checkpoint inhibition may be an effective combination to treat patients with advanced melanoma.


Assuntos
Melanoma , Terapia Viral Oncolítica , Humanos , Animais , Camundongos , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Linfócitos T CD8-Positivos/patologia , Antígenos de Neoplasias , Microambiente Tumoral
3.
Cancer Res ; 83(2): 301-315, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36351060

RESUMO

Effective treatments for de novo and treatment-emergent small-cell/neuroendocrine (t-SCNC) prostate cancer represent an unmet need for this disease. Using metastatic biopsies from patients with advanced cancer, we demonstrate that delta-like ligand 3 (DLL3) is expressed in de novo and t-SCNC and is associated with reduced survival. We develop a PET agent, [89Zr]-DFO-DLL3-scFv, that detects DLL3 levels in mouse SCNC models. In multiple patient-derived xenograft models, AMG 757 (tarlatamab), a half-life-extended bispecific T-cell engager (BiTE) immunotherapy that redirects CD3-positive T cells to kill DLL3-expressing cells, exhibited potent and durable antitumor activity. Late relapsing tumors after AMG 757 treatment exhibited lower DLL3 levels, suggesting antigen loss as a resistance mechanism, particularly in tumors with heterogeneous DLL3 expression. These findings have been translated into an ongoing clinical trial of AMG 757 in de novo and t-SCNC, with a confirmed objective partial response in a patient with histologically confirmed SCNC. Overall, these results identify DLL3 as a therapeutic target in SCNC and demonstrate that DLL3-targeted BiTE immunotherapy has significant antitumor activity in this aggressive prostate cancer subtype. SIGNIFICANCE: The preclinical and clinical evaluation of DLL3-directed immunotherapy, AMG 757, and development of a PET radiotracer for noninvasive DLL3 detection demonstrate the potential of targeting DLL3 in SCNC prostate cancer.


Assuntos
Proteínas de Membrana , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Anticorpos Monoclonais , Imunoterapia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligantes , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/terapia , Neoplasias da Próstata/patologia , Zircônio , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/terapia
4.
Blood ; 123(8): 1137-45, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24357729

RESUMO

Anemia of inflammation (AI) is commonly observed in chronic inflammatory states and may hinder patient recovery and survival. Induction of hepcidin, mediated by interleukin 6, leads to iron-restricted erythropoiesis and anemia. Several translational studies have been directed at neutralizing hepcidin overexpression as a therapeutic strategy against AI. However, additional hepcidin-independent mechanisms contribute to AI, which are likely mediated by a direct effect of inflammatory cytokines on erythropoiesis. In this study, we used wild-type, hepcidin knockout (Hamp-KO) and interleukin 6 knockout (IL-6-KO) mice as models of AI. AI was induced with heat-killed Brucella abortus (BA). The distinct roles of iron metabolism and inflammation triggered by interleukin 6 and hepcidin were investigated. BA-treated wild-type mice showed increased expression of hepcidin and inflammatory cytokines, as well as transitory suppression of erythropoiesis and shortened red blood cell lifespan, all of which contributed to the severe anemia of these mice. In contrast, BA-treated Hamp-KO or IL-6-KO mice showed milder anemia and faster recovery compared with normal mice. Moreover, they exhibited different patterns in the development and resolution of anemia, supporting the notion that interleukin 6 and hepcidin play distinct roles in modulating erythropoiesis in AI.


Assuntos
Anemia/imunologia , Brucella abortus , Brucelose/imunologia , Hepcidinas/imunologia , Interleucina-6/imunologia , Anemia/genética , Anemia/microbiologia , Animais , Medula Óssea/imunologia , Brucelose/complicações , Modelos Animais de Doenças , Eritropoese/imunologia , Feminino , Hepcidinas/genética , Temperatura Alta , Interleucina-6/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Recuperação de Função Fisiológica/imunologia
5.
Blood ; 122(17): 3054-61, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23945155

RESUMO

Iron maldistribution has been implicated in the etiology of many diseases including the anemia of inflammation (AI), atherosclerosis, diabetes, and neurodegenerative disorders. Iron metabolism is controlled by hepcidin, a 25-amino-acid peptide. Hepcidin is induced by inflammation and causes iron to be sequestered within cells of the reticuloendothelial system, suppressing erythropoiesis and blunting the activity of erythropoiesis stimulating agents (ESAs). For this reason, neutralization of hepcidin has been proposed as a therapeutic treatment of AI. The aim of the current work was to generate fully human anti-hepcidin antibodies (Abs) as a potential human therapeutic for the treatment of AI and other iron maldistribution disorders. An enzyme-linked immunosorbent assay was established using these Abs to identify patients likely to benefit from either ESAs or anti-hepcidin agents. Using human hepcidin knock-in mice, the mechanism of action of the Abs was shown to be due to an increase in available serum iron leading to enhanced red cell hemoglobinization. One of the Abs, 12B9m, was validated in a mouse model of AI and demonstrated to modulate serum iron in cynomolgus monkeys. The 12B9m Ab was deemed to be an appropriate candidate for use as a potential therapeutic to treat AI in patients with kidney disease or cancer.


Assuntos
Anemia Ferropriva/tratamento farmacológico , Anticorpos Neutralizantes/farmacologia , Eritrócitos/efeitos dos fármacos , Hemoglobinas/biossíntese , Ferro/sangue , Anemia Ferropriva/sangue , Anemia Ferropriva/patologia , Animais , Anticorpos Neutralizantes/biossíntese , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Ensaio de Imunoadsorção Enzimática , Eritrócitos/metabolismo , Eritrócitos/patologia , Eritropoese/efeitos dos fármacos , Feminino , Hematínicos/farmacologia , Humanos , Inflamação/prevenção & controle , Macaca fascicularis , Masculino , Camundongos
6.
J Immunol ; 191(4): 1845-55, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23836059

RESUMO

Iron is a trace element important for the proper folding and function of various proteins. Physiological regulation of iron stores is of critical importance for RBC production and antimicrobial defense. Hepcidin is a key regulator of iron levels within the body. Under conditions of iron deficiency, hepcidin expression is reduced to promote increased iron uptake from the diet and release from cells, whereas during conditions of iron excess, induction of hepcidin restricts iron uptake and movement within the body. The cytokine IL-6 is well established as an important inducer of hepcidin. The presence of this cytokine during inflammatory states can induce hepcidin production, iron deficiency, and anemia. In this study, we show that IL-22 also influences hepcidin production in vivo. Injection of mice with exogenous mouse IgG1 Fc fused to the N terminus of mouse IL-22 (Fc-IL-22), an IL-22R agonist with prolonged and enhanced functional potency, induced hepcidin production, with a subsequent decrease in circulating serum iron and hemoglobin levels and a concomitant increase in iron accumulation within the spleen. This response was independent of IL-6 and was attenuated in the absence of the IL-22R-associated signaling kinase, Tyk2. Ab-mediated blockade of hepcidin partially reversed the effects on iron biology caused by IL-22R stimulation. Taken together, these data suggest that exogenous IL-22 regulates hepcidin production to physiologically influence iron usage.


Assuntos
Hepcidinas/fisiologia , Interleucinas/fisiologia , Ferro/metabolismo , Sequência de Aminoácidos , Anemia Ferropriva/sangue , Anemia Ferropriva/induzido quimicamente , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Células Cultivadas , Feminino , Hepatócitos/metabolismo , Hepcidinas/antagonistas & inibidores , Hepcidinas/biossíntese , Hepcidinas/genética , Hepcidinas/imunologia , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/genética , Interleucina-6/fisiologia , Interleucinas/genética , Interleucinas/farmacologia , Interleucinas/toxicidade , Ferro/sangue , Deficiências de Ferro , Síndrome de Job/metabolismo , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Dados de Sequência Molecular , Fosforilação , Processamento de Proteína Pós-Traducional , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de IgG/deficiência , Receptores de Interleucina/agonistas , Receptores de Interleucina/fisiologia , Proteínas Recombinantes de Fusão/farmacologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Baço/metabolismo , Baço/patologia , TYK2 Quinase/deficiência , TYK2 Quinase/metabolismo , Interleucina 22
7.
Cell Metab ; 15(6): 905-17, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22682226

RESUMO

Ferroportin is the primary means of cellular iron efflux and a key component of iron metabolism. Hepcidin regulates Fpn activity by inducing its internalization and degradation. The mechanism of internalization is reported to require JAK2 activation, phosphorylation of Fpn tyrosine residues 302 and 303, and initiation of transcription through STAT3 phosphorylation. These findings suggest Fpn may be a target for therapeutic intervention through JAK2 modulation. To evaluate the proposed mechanism, Fpn internalization was assessed using several techniques combined with reagents that specifically recognized cell-surface Fpn. In vitro results demonstrated that Hepc-induced Fpn internalization did not require JAK2 or phosphorylation of Fpn residues 302 and 303, nor did it induce JAK-STAT signaling. In vivo, inhibition of JAK2 had no effect on Hepc-induced hypoferremia. However, internalization was delayed by mutation of two Fpn lysine residues that may be targets of ubiquitination.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Janus Quinase 2/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Fatores de Transcrição STAT/metabolismo , Tirosina/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Peptídeos Catiônicos Antimicrobianos , Proteínas de Transporte de Cátions/genética , Células HEK293 , Hepcidinas , Humanos , Janus Quinase 2/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Mutagênese Sítio-Dirigida , Fosforilação , Transporte Proteico , Transdução de Sinais , Ubiquitinação
8.
Blood ; 115(17): 3616-24, 2010 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-20053755

RESUMO

Iron maldistribution has been implicated in multiple diseases, including the anemia of inflammation (AI), atherosclerosis, diabetes, and neurodegenerative disorders. Iron metabolism is controlled by hepcidin, a 25-amino acid peptide. Hepcidin is induced by inflammation, causes iron to be sequestered, and thus, potentially contributes to AI. Human hepcidin (hHepc) overexpression in mice caused an iron-deficient phenotype, including stunted growth, hair loss, and iron-deficient erythropoiesis. It also caused resistance to supraphysiologic levels of erythropoiesis-stimulating agent, supporting the hypothesis that hepcidin may influence response to treatment in AI. To explore the role of hepcidin in inflammatory anemia, a mouse AI model was developed with heat-killed Brucella abortus treatment. Suppression of hepcidin mRNA was a successful anemia treatment in this model. High-affinity antibodies specific for hHepc were generated, and hHepc knock-in mice were produced to enable antibody testing. Antibody treatment neutralized hHepc in vitro and in vivo and facilitated anemia treatment in hHepc knock-in mice with AI. These data indicate that antihepcidin antibodies may be an effective treatment for patients with inflammatory anemia. The ability to manipulate iron metabolism in vivo may also allow investigation of the role of iron in a number of other pathologic conditions.


Assuntos
Anemia Ferropriva/tratamento farmacológico , Anticorpos Neutralizantes/farmacologia , Peptídeos Catiônicos Antimicrobianos/antagonistas & inibidores , Ferro/metabolismo , Anemia Ferropriva/genética , Anemia Ferropriva/imunologia , Anemia Ferropriva/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Peptídeos Catiônicos Antimicrobianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Brucella abortus , Modelos Animais de Doenças , Eritropoese/efeitos dos fármacos , Eritropoese/genética , Hepcidinas , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...