Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38883723

RESUMO

The arginine vasopressin 1b receptor (Avpr1b) plays an important role in social behaviors including social learning, memory, and aggression, and is known to be a specific marker for the cornu ammonis area 2 (CA2) regions of the hippocampus. The fasciola cinereum (FC) is an anatomical region in which Avpr1b expressing neurons are prominent, but the functional roles of the FC have yet to be investigated. Surprisingly, the FC is absent in the inbred BTBR T+tf/J (BTBR) mouse strain used to study core behavioral deficits of autism. Here, we characterized and compared transcriptomic expression profiles using single nucleus RNA sequencing and identified 7 different subpopulations and heterogeneity within the dorsal CA2 (dCA2) and FC. Mef2c, involved in autism spectrum disorder, is more highly expressed in the FC. Using Hiplex in situ hybridization, we examined the neuroanatomical locations of these subpopulations in the proximal and distal regions of the hippocampus. Anterograde tracing of Avpr1b neurons specific for the FC showed projections to the IG, dCA2, lacunosum molecular layer of CA1, dorsal fornix, septofibrial nuclei, and intermediate lateral septum (iLS). In contrast to the dCA2, inhibition of Avpr1b neurons in the FC by the inhibitory DREADD system during behavioral testing did not impair social memory. We performed single nucleus RNA sequencing in the dCA2 region and compared between wildtype (WT) and BTBR mice. We found that transcriptomic profiles of dCA2 neurons between BTBR and WT mice are very similar as they did not form any unique clusters; yet, we found there were differentially expressed genes between the dCA2s of BTBR and WT mice. Overall, this is a comprehensive study of the comparison of Avpr1b neuronal subpopulations between the FC and dCA2. The fact that FC is absent in BTBR mice, a mouse model for autism spectrum disorder, suggests that the FC may play a role in understanding neuropsychiatric disease.

2.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693526

RESUMO

The cornu ammonis area 2 (CA2) region is essential for social behaviors, especially in social aggression and social memory. Recently, we showed that targeted CA2 stimulation of vasopressin presynaptic fibers from the paraventricular nuclei of hypothalamus strongly enhances social memory in mice. In addition, the CA2 area of the mouse hippocampus receives neuronal inputs from other regions including the septal nuclei, the diagonal bands of Broca, supramammillary nuclei, and median raphe nucleus. However, the functions of these projections have been scarcely investigated. A functional role of median raphe (MR) - CA2 projection is supported by the MR to CA2 projections and 82% reduction of hippocampal serotonin (5-HT) levels following MR lesions. Thus, we investigated the behavioral role of presynaptic fibers from the median raphe nucleus projecting to the dorsal CA2 (dCA2). Here, we demonstrate the optogenetic stimulation of 5-HT projections to dCA2 from the MR do not alter social memory, but instead reduce social interaction. We show that optical stimulation of MR fibers excites interneurons in the stratum radiatum (SR) and stratum lacunosum moleculare (SLM) of CA2 region. Consistent with these observations, we show that bath application of 5-HT increases spontaneous GABA release onto CA2 pyramidal neurons and excites presumed interneurons located in the SR/SLM. This is the first study, to our knowledge, which investigates the direct effect of 5-HT release from terminals onto dCA2 neurons on social behaviors. This highlights the different roles for these inputs (i.e., vasopressin inputs regulating social memory versus serotonin inputs regulating social interaction).

3.
Behav Brain Res ; 410: 113353, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-33979656

RESUMO

Selective serotonin reuptake inhibitors (SSRIs) are the most widely used treatment by women experiencing depression during pregnancy. However, the effects of maternal SSRI use on early offspring development remain poorly understood. Recent studies suggest that SSRIs can modify the gut microbiota and interact directly with particular gut bacteria, raising the question of whether the gut microbiome impacts host responses to SSRIs. In this study, we investigate effects of prenatal SSRI exposure on fetal neurodevelopment and further evaluate potential modulatory influences of the maternal gut microbiome. We demonstrate that maternal treatment with the SSRI fluoxetine induces widespread alterations in the fetal brain transcriptome during midgestation, including increases in the expression of genes relevant to synaptic organization and neuronal signaling and decreases in the expression of genes related to DNA replication and mitosis. Notably, maternal fluoxetine treatment from E7.5 to E14.5 has no overt effects on the composition of the maternal gut microbiota. However, maternal pretreatment with antibiotics to deplete the gut microbiome substantially modifies transcriptional responses of the fetal brain to maternal fluoxetine treatment. In particular, maternal fluoxetine treatment elevates localized expression of the opioid binding protein/cell adhesion molecule like gene Opcml in the fetal thalamus and lateral ganglionic eminence, which is prevented by maternal antibiotic treatment. Together, these findings reveal that maternal fluoxetine treatment alters gene expression in the fetal brain through pathways that are impacted, at least in part, by the presence of the maternal gut microbiota.


Assuntos
Encéfalo/efeitos dos fármacos , Moléculas de Adesão Celular/efeitos dos fármacos , Embrião de Mamíferos/efeitos dos fármacos , Fluoxetina/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Transcriptoma/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Fluoxetina/administração & dosagem , Proteínas Ligadas por GPI/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...