Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(9): 3332-7, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24550479

RESUMO

Despite the vast diversity of sizes and shapes of living organisms, life's organization across scales exhibits remarkable commonalities, most notably through the approximate validity of Kleiber's law, the power law scaling of metabolic rates with the mass of an organism. Here, we present a derivation of Kleiber's law that is independent of the specificity of the myriads of organism species. Specifically, we account for the distinct geometries of trees and mammals as well as deviations from the pure power law behavior of Kleiber's law, and predict the possibility of life forms with geometries intermediate between trees and mammals. We also make several predictions in excellent accord with empirical data. Our theory relates the separate evolutionary histories of plants and animals through the fundamental physics underlying their distinct overall forms and physiologies.


Assuntos
Adaptação Biológica/fisiologia , Evolução Biológica , Constituição Corporal/fisiologia , Mamíferos/anatomia & histologia , Modelos Biológicos , Árvores/anatomia & histologia , Animais , Mamíferos/fisiologia , Metabolismo/fisiologia , Especificidade da Espécie , Árvores/fisiologia
3.
CBE Life Sci Educ ; 12(2): 175-86, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23737626

RESUMO

A common feature of the recent calls for reform of the undergraduate biology curriculum has been for better coordination between biology and the courses from the allied disciplines of mathematics, chemistry, and physics. Physics has lagged behind math and chemistry in creating new, biologically oriented curricula, although much activity is now taking place, and significant progress is being made. In this essay, we consider a case study: a multiyear conversation between a physicist interested in adapting his physics course for biologists (E.F.R.) and a biologist interested in including more physics in his biology course (T.J.C.). These extended discussions have led us both to a deeper understanding of each other's discipline and to significant changes in the way we each think about and present our classes. We discuss two examples in detail: the creation of a physics problem on fluid flow for a biology class and the creation of a biologically authentic physics problem on scaling and dimensional analysis. In each case, we see differences in how the two disciplines frame and see value in the tasks. We conclude with some generalizations about how biology and physics look at the world differently that help us navigate the minefield of counterproductive stereotypical responses.


Assuntos
Estudos Interdisciplinares , Aprendizagem , Motivação , Humanos
4.
Am J Bot ; 90(10): 1405-15, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21659092

RESUMO

To identify developmental mechanisms that might have been involved in the evolution of axial sporophytes in early land plants, we examined the effects of auxin-regulatory compounds in the sporophytes of the hornwort Phaeoceros personii, the liverwort Pellia epiphylla, and the moss Polytrichum ohioense, members of the three divisions of extant bryophytes. The altered growth of isolated young sporophytes exposed to applied auxin (indole-3-acetic acid) or an auxin antagonist (p-chlorophenoxyisobutyric acid) suggests that endogenous auxin acts to regulate the rates of axial growth in all bryophyte divisions. Auxin in young hornwort sporophytes moved at very low fluxes, was insensitive to an auxin-transport inhibitor (N-[1-naphthyl]phthalamic acid), and exhibited a polarity ratio close to 1.0, implying that auxin moves by simple diffusion in these structures. Emerging liverwort sporophytes had somewhat higher auxin fluxes, which were sensitive to transport inhibitors but lacked any measurable polarity. Thus, auxin movement in liverwort sporophytes appears to result from a unique type of apolar facilitated diffusion. In young Polytrichum sporophytes, auxin movement was predominantly basipetal and occurred at high fluxes exceeding those measured in maize coleoptiles. In older Polytrichum sporophytes, acropetal auxin flux had increased beyond the level measured for basipetal flux. Insofar as acropetal and basipetal fluxes had different inhibitor sensitivities, these results suggested that moss sporophytes carry out bidirectional polar transport in different cellular pathways, which resembles the transport in certain angiosperm structures. Therefore, the three lineages of extant bryophytes appear to have evolved independent innovations for auxin regulation of axial growth, with similar mechanisms operating in moss sporophytes and vascular plants.

5.
Am J Bot ; 90(8): 1131-43, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21659213

RESUMO

The complete range of various phyllotaxes exemplified in aquatic plants provide an opportunity to characterize the fundamental geometrical relationships operating in leaf patterning. A new polar-coordinate model was used to characterize the correlation between the shapes of shoot meristems and the arrangements of young leaf primordia arising on those meristems. In aquatic plants, the primary geometrical relationship specifying spiral vs. whorled phyllotaxis is primordial position: primordia arising on the apical dome (as defined by displacement angles θ ≤ 90° during maximal phase) are often positioned in spiral patterns, whereas primordia arising on the subtending axis (as defined by displacement angles of θ ≥ 90° during maximal phase) are arranged in whorled patterns. A secondary geometrical relationship derived from the literature shows an inverse correlation between the primordial size : available space ratio and the magnitude of the Fibonacci numbers in spiral phyllotaxis or the number of leaves per whorl in whorled phyllotaxis. The data available for terrestrial plants suggest that their phyllotactic patterning may also be specified by these same geometrical relationships. Major exceptions to these correlations are attributable to persistent embryonic patterning, leaflike structures arising from stipules, congenital splitting of young primordia, and/or non-uniform elongating of internodes. The geometrical analysis described in this paper provides the morphological context for interpreting the phenotypes of phyllotaxis mutants and for constructing realistic models of the underlying mechanisms responsible for generating phyllotactic patterns.

6.
Plant Mol Biol ; 49(3-4): 319-38, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12036257

RESUMO

This review represents the first effort ever to survey the entire literature on auxin (indole-3-acetic acid, IAA) action in all plants, with special emphasis on the green plant lineage, including charophytes (the green alga group closest to the land plants), bryophytes (the most basal land plants), pteridophytes (vascular non-seed plants), and seed plants. What emerges from this survey is the surprising perspective that the physiological mechanisms for regulating IAA levels and many IAA-mediated responses found in seed plants are also present in charophytes and bryophytes, at least in nascent forms. For example, the available evidence suggests that the apical regions of both charophytes and liverworts synthesize IAA via a tryptophan-independent pathway, with IAA levels being regulated via the balance between the rates of IAA biosynthesis and IAA degradation. The apical regions of all the other land plants utilize the same class of biosynthetic pathway, but they have the potential to utilize IAA conjugation and conjugate hydrolysis reactions to achieve more precise spatial and temporal control of IAA levels. The thallus tips of charophytes exhibit saturable IAA influx and efflux carriers, which are apparently not sensitive to polar IAA transport inhibitors. By contrast, two divisions of bryophyte gametophytes and moss sporophytes are reported to carry out polar IAA transport, but these groups exhibit differing sensitivities to those inhibitors. Although the IAA regulation of charophyte development has received almost no research attention, the bryophytes manifest a wide range of developmental responses, including tropisms, apical dominance, and rhizoid initiation, which are subject to IAA regulation that resembles the hormonal control over corresponding responses in seed plants. In pteridophytes, IAA regulates root initiation and vascular tissue differentiation in a manner also very similar to its effects on those processes in seed plants. Thus, it is concluded that the seed plants did not evolve de novo mechanisms for mediating IAA responses, but have rather modified pre-existing mechanisms already operating in the early land plants. Finally, this paper discusses the encouraging prospects for investigating the molecular evolution of auxin action.


Assuntos
Evolução Biológica , Ácidos Indolacéticos/metabolismo , Plantas/metabolismo , Transporte Biológico , Ácidos Indolacéticos/farmacologia , Desenvolvimento Vegetal , Plantas/efeitos dos fármacos
7.
Planta ; 214(4): 505-9, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11925033

RESUMO

All plants exhibit the property of cellular totipotency, whereby individual cells can regenerate into an entire organism. However little is known about the underlying mechanisms regulating totipotency. Using a preparative microtechnique, we report an 80-fold surge in the concentration of free auxin that is correlated with the initial stages of zygotic embryogenesis in carrots. The concentration of free IAA increases from a basal level of ca. 25 ng/g FW in unfertilized ovules to ca. 2.000 ng/g FW in the late globular and early heart stages, then back to the basal level in the torpedo stage. This initial increase in IAA levels is diagnostic of the activity of the tryptophan-mediated pathway for IAA biosynthesis, while the maintenance of the basal levels is attributed to the tryptophan-independent pathway for IAA biosynthesis. Our observations are consistent with the hypothesis that the sequential activation of alternative IAA biosynthetic pathways is a critical mechanism for regulating carrot (Daucus carota L. cv. Danvers 126) embryogenesis and other instances of plant totipotency.


Assuntos
Daucus carota/metabolismo , Ácidos Indolacéticos/biossíntese , Sementes/metabolismo , Daucus carota/embriologia , Daucus carota/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Reprodução/fisiologia , Sementes/crescimento & desenvolvimento , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...