Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Endocrinol (Lausanne) ; 14: 1272939, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027204

RESUMO

Introduction: Pediatric obesity has steadily increased in recent decades. Large-scale genome-wide association studies (GWAS) conducted primarily in Eurocentric adult populations have identified approximately 100 loci that predispose to obesity and type II diabetes. GWAS in children and individuals of non-European descent, both disproportionately affected by obesity, are fewer. Rare syndromic and monogenic obesities account for only a small portion of childhood obesity, so understanding the role of other genetic variants and their combinations in heritable obesities is key to developing targeted and personalized therapies. Tight and responsive regulation of the cAMP-dependent protein kinase (PKA) signaling pathway is crucial to maintaining healthy energy metabolism, and mutations in PKA-linked genes represent the most common cause of monogenic obesity. Methods: For this study, we performed targeted exome sequencing of 53 PKA signaling-related genes to identify variants in genomic DNA from a large, ethnically diverse cohort of obese or metabolically challenged youth. Results: We confirmed 49 high-frequency variants, including a novel variant in the PDE11A gene (c.152C>T). Several other variants were associated with metabolic characteristics within ethnic groups. Discussion: We conclude that a PKA pathway-specific variant search led to the identification of several new genetic associations with obesity in an ethnically diverse population.


Assuntos
Diabetes Mellitus Tipo 2 , Obesidade Infantil , Adulto , Adolescente , Humanos , Criança , Obesidade Infantil/genética , Estudo de Associação Genômica Ampla , Mutação
3.
Glia ; 71(2): 205-228, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36093576

RESUMO

The mammalian pituitary gland is a complex organ consisting of hormone-producing cells, anterior lobe folliculostellate cells (FSCs), posterior lobe pituicytes, vascular pericytes and endothelial cells, and Sox2-expressing stem cells. We present single-cell RNA sequencing and immunohistofluorescence analyses of pituitary cells of adult female rats with a focus on the transcriptomic profiles of nonhormonal cell types. Samples obtained from whole pituitaries and separated anterior and posterior lobe cells contained all expected pituitary resident cell types and lobe-specific vascular cell subpopulations. FSCs and pituicytes expressed S100B, ALDOC, EAAT1, ALDH1A1, and VIM genes and proteins, as well as other astroglial marker genes, some common and some cell type-specific. We also found that the SOX2 gene and protein were expressed in ~15% of pituitary cells, including FSCs, pituicytes, and a fraction of hormone-producing cells, arguing against its stem cell specificity. FSCs comprised two Sox2-expressing subclusters; FS1 contained more cells but lower genetic diversity, while FS2 contained proliferative cells, shared genes with hormone-producing cells, and expressed genes consistent with stem cell niche formation, regulation of cell proliferation and stem cell pluripotency, including the Hippo and Wnt pathways. FS1 cells were randomly distributed in the anterior and intermediate lobes, while FS2 cells were localized exclusively in the marginal zone between the anterior and intermediate lobes. These data indicate the identity of the FSCs as anterior pituitary-specific astroglia, with FS1 cells representing differentiated cells equipped for classical FSC roles and FS2 cells exhibiting additional stem cell-like features.


Assuntos
Adeno-Hipófise , Ratos , Feminino , Animais , Adeno-Hipófise/metabolismo , Astrócitos , Células Endoteliais , Células-Tronco , Hormônios/metabolismo , Mamíferos
4.
Cell Stem Cell ; 29(12): 1685-1702.e22, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459969

RESUMO

Human induced pluripotent stem cell (iPSC) lines are a powerful tool for studying development and disease, but the considerable phenotypic variation between lines makes it challenging to replicate key findings and integrate data across research groups. To address this issue, we sub-cloned candidate human iPSC lines and deeply characterized their genetic properties using whole genome sequencing, their genomic stability upon CRISPR-Cas9-based gene editing, and their phenotypic properties including differentiation to commonly used cell types. These studies identified KOLF2.1J as an all-around well-performing iPSC line. We then shared KOLF2.1J with groups around the world who tested its performance in head-to-head comparisons with their own preferred iPSC lines across a diverse range of differentiation protocols and functional assays. On the strength of these findings, we have made KOLF2.1J and its gene-edited derivative clones readily accessible to promote the standardization required for large-scale collaborative science in the stem cell field.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Diferenciação Celular , Edição de Genes , Bioensaio
5.
Methods Mol Biol ; 2550: 101-104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36180682

RESUMO

The isolation of single cells from the pineal gland plays an essential role in understanding the complex nature of such processes as differentiation, metabolism, and cell-cell communication within the pineal gland. This procedure is the portal to single-cell RNA sequencing, which produces the transcriptome of individual cells. As such, single-cell RNA sequencing is critical to the continued development of knowledge of the pineal cell physiology. This chapter describes a simple procedure for isolating individual cells. Starting with the incubation of whole tissue in an enzyme preparation, which dissociates the pineal gland into small pieces, it continues with gentle trituration and then isolation of single cells through filtration. The procedure takes less than 2 h.


Assuntos
Glândula Pineal , Astrócitos , Glândula Pineal/metabolismo , Transcriptoma
6.
Methods Mol Biol ; 2550: 105-112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36180683

RESUMO

The pineal gland presents a powerful genetic tool to study a broad range of physiological processes. It has been instrumental as a model in understanding transduction processes and daily changes in gene expression and holds great promise in understanding development. Currently, the field is at an exciting point, with methods available for the isolation of individual cells and, as presented here, the preparation of these single cells for sequencing. The resulting cellular transcriptomes have played a role in categorizing cells in the pineal gland, with current estimates including two types of pinealocytes, three types of astrocytes, two types of microglia, and two types of endothelial cells, including the poorly understood vascular and meningeal cell. The methods described in this chapter will serve to support and advance cellular studies of the pineal gland in the twenty-first century.


Assuntos
Glândula Pineal , Astrócitos/metabolismo , Células Endoteliais , Microglia/metabolismo , Glândula Pineal/metabolismo , Análise de Sequência de RNA
7.
Methods Mol Biol ; 2550: 133-137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36180686

RESUMO

The pineal transcriptome webpage is described, which provides access to the transcript expression profile of the vertebrate pineal gland and, in many cases, the retina. Experimental material was obtained during the day and night, providing an opportunity to examine rhythmicity. The vertebrates represented include human, rhesus, rat, mouse, chicken, and zebrafish. In addition, data on the effects of surgical denervation and pharmacological treatments of the rat are included. Data are freely available to users.


Assuntos
Glândula Pineal , Animais , Ritmo Circadiano/genética , Humanos , Camundongos , Glândula Pineal/metabolismo , Ratos , Retina/metabolismo , Transcriptoma , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
8.
Nucleic Acids Res ; 50(16): 9534-9547, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35979957

RESUMO

La-related proteins (LARPs) comprise a family of RNA-binding proteins involved in a wide range of posttranscriptional regulatory activities. LARPs share a unique tandem of two RNA-binding domains, La motif (LaM) and RNA recognition motif (RRM), together referred to as a La-module, but vary in member-specific regions. Prior structural studies of La-modules reveal they are pliable platforms for RNA recognition in diverse contexts. Here, we characterize the La-module of LARP1, which plays an important role in regulating synthesis of ribosomal proteins in response to mTOR signaling and mRNA stabilization. LARP1 has been well characterized functionally but no structural information exists for its La-module. We show that unlike other LARPs, the La-module in LARP1 does not contain an RRM domain. The LaM alone is sufficient for binding poly(A) RNA with submicromolar affinity and specificity. Multiple high-resolution crystal structures of the LARP1 LaM domain in complex with poly(A) show that it is highly specific for the RNA 3'-end, and identify LaM residues Q333, Y336 and F348 as the most critical for binding. Use of a quantitative mRNA stabilization assay and poly(A) tail-sequencing demonstrate functional relevance of LARP1 RNA binding in cells and provide novel insight into its poly(A) 3' protection activity.


Assuntos
Autoantígenos , Ribonucleoproteínas , Ribonucleoproteínas/metabolismo , Autoantígenos/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Poli A/metabolismo , RNA/genética , RNA/metabolismo , Ligação Proteica
9.
Nature ; 603(7899): 131-137, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35197628

RESUMO

Variants of UNC13A, a critical gene for synapse function, increase the risk of amyotrophic lateral sclerosis and frontotemporal dementia1-3, two related neurodegenerative diseases defined by mislocalization of the RNA-binding protein TDP-434,5. Here we show that TDP-43 depletion induces robust inclusion of a cryptic exon in UNC13A, resulting in nonsense-mediated decay and loss of UNC13A protein. Two common intronic UNC13A polymorphisms strongly associated with amyotrophic lateral sclerosis and frontotemporal dementia risk overlap with TDP-43 binding sites. These polymorphisms potentiate cryptic exon inclusion, both in cultured cells and in brains and spinal cords from patients with these conditions. Our findings, which demonstrate a genetic link between loss of nuclear TDP-43 function and disease, reveal the mechanism by which UNC13A variants exacerbate the effects of decreased TDP-43 function. They further provide a promising therapeutic target for TDP-43 proteinopathies.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Proteinopatias TDP-43 , Processamento Alternativo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Códon sem Sentido , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Humanos , Proteínas do Tecido Nervoso , Polimorfismo de Nucleotídeo Único/genética
10.
Front Endocrinol (Lausanne) ; 12: 730947, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616364

RESUMO

Introduction: Adrenocortical hyperplasia and adrenal rest tumor (ART) formation are common in congenital adrenal hyperplasia (CAH). Although driven by excessive corticotropin, much is unknown regarding the morphology and transformation of these tissues. Our study objective was to characterize CAH-affected adrenals and ART and compare with control adrenal and gonadal tissues. Patients/Methods: CAH adrenals, ART and control tissues were analyzed by histology, immunohistochemistry, and transcriptome sequencing. We investigated protein expression of the ACTH receptor (MC2R), steroidogenic (CYP11B2, CYP11B1, CYB5A) and immune (CD20, CD3, CD68) biomarkers, and delta-like 1 homolog (DLK1), a membrane bound protein broadly expressed in fetal and many endocrine cells. RNA was isolated and gene expression was analyzed by RNA sequencing (RNA-seq) followed by principle component, and unsupervised clustering analyses. Results: Based on immunohistochemistry, CAH adrenals and ART demonstrated increased zona reticularis (ZR)-like CYB5A expression, compared to CYP11B1, and CYP11B2, markers of zona fasciculata and zona glomerulosa respectively. CYP11B2 was mostly absent in CAH adrenals and absent in ART. DLK1 was present in CAH adrenal, ART, and also control adrenal and testis, but was absent in control ovary. Increased expression of adrenocortical marker MC2R, was observed in CAH adrenals compared to control adrenal. Unlike control tissues, significant nodular lymphocytic infiltration was observed in CAH adrenals and ART, with CD20 (B-cell), CD3 (T-cell) and CD68 (macrophage/monocyte) markers of inflammation. RNA-seq data revealed co-expression of adrenal MC2R, and testis-specific INSL3, HSD17B3 in testicular ART indicating the presence of both gonadal and adrenal features, and high expression of DLK1 in ART, CAH adrenals and control adrenal. Principal component analysis indicated that the ART transcriptome was more similar to CAH adrenals and least similar to control testis tissue. Conclusions: CAH-affected adrenal glands and ART have similar expression profiles and morphology, demonstrating increased CYB5A with ZR characteristics and lymphocytic infiltration, suggesting a common origin that is similarly affected by the abnormal hormonal milieu. Immune system modulators may play a role in tumor formation of CAH.


Assuntos
Hiperplasia Suprarrenal Congênita/complicações , Tumor de Resto Suprarrenal/patologia , Hiperfunção Adrenocortical/patologia , Biomarcadores/análise , Citocromos b5/metabolismo , Tumor de Resto Suprarrenal/etiologia , Tumor de Resto Suprarrenal/metabolismo , Hiperfunção Adrenocortical/etiologia , Hiperfunção Adrenocortical/metabolismo , Estudos de Casos e Controles , Pré-Escolar , Citocromos b5/genética , Feminino , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Prognóstico , Transcriptoma
11.
Biochem Biophys Res Commun ; 571: 137-144, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34325129

RESUMO

Infantile neuronal ceroid lipofuscinosis (INCL), also known as CLN1-disease, is a devastating neurodegenerative lysosomal storage disorder (LSD), caused by inactivating mutations in the CLN1 gene. The Cln1-/- mice, which mimic INCL, manifest progressive neuroinflammation contributing to neurodegeneration. However, the underlying mechanism of neuroinflammation in INCL and in Cln1-/- mice has remained elusive. Previously, it has been reported that microRNA-155 (miR-155) regulates inflammation and miR profiling in Cln1-/- mouse brain showed that the level of miR-155 was upregulated. Thus, we sought to determine whether ablation of miR-155 in Cln1-/- mice may suppress neuroinflammation in these mice. Towards this goal, we generated Cln1-/-/miR-155-/- double-knockout mice and evaluated the inflammatory signatures in the brain. We found that the brains of double-KO mice manifest progressive neuroinflammatory changes virtually identical to those found in Cln1-/- mice. We conclude that ablation of miR-155 in Cln1-/- mice does not alter the neuroinflammatory trajectory in INCL mouse model.


Assuntos
Modelos Animais de Doenças , Inflamação/metabolismo , MicroRNAs/metabolismo , Tioléster Hidrolases/metabolismo , Animais , Inflamação/genética , Camundongos , Camundongos Knockout , MicroRNAs/genética , Tioléster Hidrolases/deficiência , Tioléster Hidrolases/genética
12.
Methods Enzymol ; 655: 119-137, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34183118

RESUMO

Polyadenylation of the 3' end of mRNAs is an important mechanism for regulating their stability and translation. We developed a nucleotide-resolution, transcriptome-wide, single-molecule SM-PAT-Seq method to accurately measure the polyA tail lengths of individual transcripts using long-read sequencing. The method generates cDNA using a double stranded splint adaptor targeting the far 3' end of the polyA tail for first strand synthesis along with random hexamers for second strand synthesis. This straight-forward method yields accurate polyA tail sequence lengths, can identify non-A residues in those tails, and quantitate transcript abundance.


Assuntos
Poli A , Transcriptoma , Sequenciamento de Nucleotídeos em Larga Escala , Poli A/genética , Poli A/metabolismo , Poliadenilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
13.
Curr Protoc ; 1(2): e38, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33620770

RESUMO

Drosophila provides a powerful genetic system and an excellent model to study the development and function of the nervous system. The fly's small brain and complex behavior has been instrumental in mapping neuronal circuits and elucidating the neural basis of behavior. The fast pace of fly development and the wealth of genetic tools has enabled systematic studies on cell differentiation and fate specification, and has uncovered strategies for axon guidance and targeting. The accessibility of neuronal structures and the ability to edit and manipulate gene expression in selective cells and/or synaptic compartments has revealed mechanisms for synapse assembly and neuronal connectivity. Recent advances in single-cell RNA sequencing (scRNA-seq) have further enhanced our appreciation and understanding of neuronal diversity in a fly brain. However, due to the small size of the fly brain and its constituent cells, scRNA-seq methodologies require a few adaptations. Here, we describe a set of protocols optimized for scRNA-seq analysis of the Drosophila larval ventral nerve cord, starting from tissue dissection and cell dissociation to cDNA library preparation, sequencing, and data analysis. We apply this workflow to three separate samples and detail the technical challenges associated with successful application of scRNA-seq to studies on neuronal diversity. An accompanying article (Vicidomini, Nguyen, Choudhury, Brody, & Serpe, 2021) presents a custom multistage analysis pipeline that integrates modules contained in different R packages to ensure high-flexibility, high-quality RNA-seq data analysis. These protocols are developed for Drosophila larval ventral nerve cord, but could easily be adapted to other tissues and model organisms. © 2021 U.S. Government. Basic Protocol 1: Dissection of larval ventral nerve cords and preparation of single-cell suspensions Basic Protocol 2: Preparation and sequencing of single-cell transcriptome libraries Basic Protocol 3: Alignment of raw sequencing data to indexed genome and generation of count matrices.


Assuntos
Drosophila , Análise de Célula Única , Animais , Drosophila/genética , Larva/genética , Análise de Sequência de RNA , Software
14.
Elife ; 92020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32744499

RESUMO

La-related protein 4 (LARP4) directly binds both poly(A) and poly(A)-binding protein (PABP). LARP4 was shown to promote poly(A) tail (PAT) lengthening and stabilization of individual mRNAs presumably by protection from deadenylation (Mattijssen et al., 2017). We developed a nucleotide resolution transcriptome-wide, single molecule SM-PAT-seq method. This revealed LARP4 effects on a wide range of PAT lengths for human mRNAs and mouse mRNAs from LARP4 knockout (KO) and control cells. LARP4 effects are clear on long PAT mRNAs but become more prominent at 30-75 nucleotides. We also analyzed time courses of PAT decay transcriptome-wide and for ~200 immune response mRNAs. This demonstrated accelerated deadenylation in KO cells on PATs < 75 nucleotides and phasing consistent with greater PABP dissociation in the absence of LARP4. Thus, LARP4 shapes PAT profiles throughout mRNA lifespan with impact on mRNA decay at short lengths known to sensitize PABP dissociation in response to deadenylation machinery.


Assuntos
Adenina/metabolismo , Autoantígenos/metabolismo , Poli A/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Linhagem Celular , Feminino , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Camundongos , Proteínas de Ligação a Poli(A)/metabolismo , Análise de Sequência de RNA/métodos , Imagem Individual de Molécula , Antígeno SS-B
15.
J Pineal Res ; 69(3): e12673, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32533862

RESUMO

The website and database https://snengs.nichd.nih.gov provides RNA sequencing data from multi-species analysis of the pineal glands from zebrafish (Danio rerio), chicken (White Leghorn), rat (Rattus novegicus), mouse (Mus musculus), rhesus macaque (Macaca mulatta), and human (Homo sapiens); in most cases, retinal data are also included along with results of the analysis of a mixture of RNA from tissues. Studies cover day and night conditions; in addition, a time series over multiple hours, a developmental time series and pharmacological experiments on rats are included. The data have been uniformly re-processed using the latest methods and assemblies to allow for comparisons between experiments and to reduce processing differences. The website presents search functionality, graphical representations, Excel tables, and track hubs of all data for detailed visualization in the UCSC Genome Browser. As more data are collected from investigators and improved genomes become available in the future, the website will be updated. This database is in the public domain and elements can be reproduced by citing the URL and this report. This effort makes the results of 21st century transcriptome profiling widely available in a user-friendly format that is expected to broadly influence pineal research.


Assuntos
Bases de Dados de Ácidos Nucleicos , Regulação da Expressão Gênica , Internet , Glândula Pineal/metabolismo , Retina/metabolismo , Animais , Galinhas , Humanos , Macaca mulatta , Camundongos , Ratos , Peixe-Zebra
16.
Front Cell Dev Biol ; 8: 580019, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425888

RESUMO

GRTH/DDX25 is a member of the DEAD-box family of RNA helicases that play an essential role in spermatogenesis. GRTH knock-in (KI) mice with the human mutant GRTH gene (R242H) show loss of the phospho-species from cytoplasm with preservation of the non-phospho form in the cytoplasm and nucleus. GRTH KI mice are sterile and lack elongated spermatids and spermatozoa, with spermatogenic arrest at step 8 of round spermatids which contain chromatoid body (CB) markedly reduced in size. We observed an absence of phospho-GRTH in CB of GRTH KI mice. RNA-Seq analysis of mRNA isolated from CB revealed that 1,421 genes show differential abundance, of which 947 genes showed a decrease in abundance and 474 genes showed an increase in abundance in GRTH KI mice. The transcripts related to spermatid development, differentiation, and chromatin remodeling (Tnp1/2, Prm1/2/3, Spem1/2, Tssk 2/3/6, Grth, tAce, and Upf2) were reduced, and the transcripts encoding for factors involved in RNA transport, regulation, and surveillance and transcriptional and translational regulation (Eef1a1, Ppp1cc, Pabpc1, Ybx3, Tent5b, H2al1m, Dctn2, and Dync1h1) were increased in the CB of KI mice and were further validated by qPCR. In the round spermatids of wild-type mice, mRNAs of Tnp2, Prm2, and Grth were abundantly co-localized with MVH protein in the CB, while in GRTH KI mice these were minimally present. In addition, GRTH binding to Tnp1/2, Prm1/2, Grth, and Tssk6 mRNAs was found to be markedly decreased in KI. These results demonstrate the importance of phospho-GRTH in the maintenance of the structure of CB and its role in the storage and stability of germ cell-specific mRNAs during spermiogenesis.

17.
J Pineal Res ; 68(2): e12629, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31808568

RESUMO

The pineal gland is a neuroendocrine organ responsible for production of the nocturnal hormone melatonin. A specific set of homeobox gene-encoded transcription factors govern pineal development, and some are expressed in adulthood. The brain-specific homeobox gene (Bsx) falls into both categories. We here examined regulation and function of Bsx in the mature pineal gland of the rat. We report that Bsx is expressed from prenatal stages into adulthood, where Bsx transcripts are localized in the melatonin-synthesizing pinealocytes, as revealed by RNAscope in situ hybridization. Bsx transcripts were also detected in the adult human pineal gland. In the rat pineal gland, Bsx was found to exhibit a 10-fold circadian rhythm with a peak at night. By combining in vivo adrenergic stimulation and surgical denervation of the gland in the rat with in vitro stimulation and transcriptional inhibition in cultured pinealocytes, we show that rhythmic expression of Bsx is controlled at the transcriptional level by the sympathetic neural input to the gland acting via adrenergic stimulation with cyclic AMP as a second messenger. siRNA-mediated knockdown (>80% reduction) in pinealocyte cultures revealed Bsx to be a negative regulator of other pineal homeobox genes, including paired box 4 (Pax4), but no effect on genes encoding melatonin-synthesizing enzymes was detected. RNA sequencing analysis performed on siRNA-treated pinealocytes further revealed that downstream target genes of Bsx are mainly involved in developmental processes. Thus, rhythmic Bsx expression seems to govern other developmental regulators in the mature pineal gland.


Assuntos
Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Melatonina/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Glândula Pineal/metabolismo , Fatores de Transcrição/biossíntese , Animais , Feminino , Masculino , Glândula Pineal/citologia , Ratos Sprague-Dawley
18.
J Pineal Res ; 68(1): e12616, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31609018

RESUMO

Homeobox genes generally encode transcription factors involved in regulating developmental processes. In the pineal gland, a brain structure devoted to nocturnal melatonin synthesis, a number of homeobox genes are also expressed postnatally; among these is the LIM homeobox 4 gene (Lhx4). We here report that Lhx4 is specifically expressed in the postnatal pineal gland of rats and humans. Circadian analyses revealed a fourfold rhythm in Lhx4 expression in the rat pineal gland, with rhythmic expression detectable from postnatal day 10. Pineal Lhx4 expression was confirmed to be positively driven by adrenergic signaling, as evidenced by in vivo modulation of Lhx4 expression by pharmacological (isoprenaline injection) and surgical (superior cervical ganglionectomy) interventions. In cultured pinealocytes, Lhx4 expression was upregulated by cyclic AMP, a second messenger of norepinephrine. By use of RNAscope technology, Lhx4 transcripts were found to be exclusively localized in melatonin-synthesizing pinealocytes. This prompted us to investigate the possible role of Lhx4 in regulation of melatonin-producing enzymes. By use of siRNA technology, we knocked down Lhx4 by 95% in cultured pinealocytes; this caused a reduction in transcripts encoding the melatonin-producing enzyme arylalkylamine N-acetyl transferase (Aanat). Screening the transcriptome of siRNA-treated pinealocytes by RNAseq revealed a significant impact of Lhx4 on the phototransduction pathway and on transcripts involved in development of the nervous system and photoreceptors. These data suggest that rhythmic expression of Lhx4 in the pineal gland is controlled via an adrenergic-cyclic AMP mechanism and that Lhx4 acts to promote nocturnal melatonin synthesis.


Assuntos
Proteínas com Homeodomínio LIM , Melatonina/metabolismo , Glândula Pineal , Fatores de Transcrição , Transcriptoma/genética , Adulto , Animais , Arilalquilamina N-Acetiltransferase/genética , Arilalquilamina N-Acetiltransferase/metabolismo , Ritmo Circadiano/genética , AMP Cíclico/metabolismo , Feminino , Humanos , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Masculino , Melatonina/genética , Pessoa de Meia-Idade , Norepinefrina/metabolismo , Glândula Pineal/química , Glândula Pineal/citologia , Glândula Pineal/crescimento & desenvolvimento , Glândula Pineal/metabolismo , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Adulto Jovem
19.
Artigo em Inglês | MEDLINE | ID: mdl-31620083

RESUMO

Understanding the physiology and pathology of an organ composed of a variety of cell populations depends critically on genome-wide information on each cell type. Here, we report single-cell transcriptome profiling of over 6,800 freshly dispersed anterior pituitary cells from postpubertal male and female rats. Six pituitary-specific cell types were identified based on known marker genes and characterized: folliculostellate cells and hormone-producing corticotrophs, gonadotrophs, thyrotrophs, somatotrophs, and lactotrophs. Also identified were endothelial and blood cells from the pituitary capillary network. The expression of numerous developmental and neuroendocrine marker genes in both folliculostellate and hormone-producing cells supports that they have a common origin. For several genes, the validity of transcriptome analysis was confirmed by qRT-PCR and single cell immunocytochemistry. Folliculostellate cells exhibit impressive transcriptome diversity, indicating their major roles in production of endogenous ligands and detoxification enzymes, and organization of extracellular matrix. Transcriptome profiles of hormone-producing cells also indicate contributions toward those functions, while also clearly demonstrating their endocrine function. This survey highlights many novel genetic markers contributing to pituitary cell type identity, sexual dimorphism, and function, and points to relationships between hormone-producing and folliculostellate cells.

20.
Artigo em Inglês | MEDLINE | ID: mdl-31616371

RESUMO

The analysis of pineal cell biology has undergone remarkable development as techniques have become available which allow for sequencing of entire transcriptomes and, most recently, the sequencing of the transcriptome of individual cells. Identification of at least nine distinct cell types in the rat pineal gland has been made possible, allowing identification of the precise cells of origin and expression of transcripts for the first time. Here the history and current state of knowledge generated by these transcriptomic efforts is reviewed, with emphasis on the insights suggested by the findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...