Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Math Biosci Eng ; 20(5): 9179-9207, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-37161239

RESUMO

Academic spaces in colleges and universities span classrooms for 10 students to lecture halls that hold over 600 people. During the break between consecutive classes, students from the first class must leave and the new class must find their desks, regardless of whether the room holds 10 or 600 people. Here we address the question of how the size of large lecture halls affects classroom-turnover times, focusing on non-emergency settings. By adapting the established social-force model, we treat students as individuals who interact and move through classrooms to reach their destinations. We find that social interactions and the separation time between consecutive classes strongly influence how long it takes entering students to reach their desks, and that these effects are more pronounced in larger lecture halls. While the median time that individual students must travel increases with decreased separation time, we find that shorter separation times lead to shorter classroom-turnover times overall. This suggests that the effects of scheduling gaps and lecture-hall size on classroom dynamics depends on the perspective-individual student or whole class-that one chooses to take.


Assuntos
Mentol , Estudantes , Humanos , Viagem , Universidades
2.
Proc Natl Acad Sci U S A ; 120(20): e2216186120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155901

RESUMO

Biological and social systems are structured at multiple scales, and the incentives of individuals who interact in a group may diverge from the collective incentive of the group as a whole. Mechanisms to resolve this tension are responsible for profound transitions in evolutionary history, including the origin of cellular life, multicellular life, and even societies. Here, we synthesize a growing literature that extends evolutionary game theory to describe multilevel evolutionary dynamics, using nested birth-death processes and partial differential equations to model natural selection acting on competition within and among groups of individuals. We analyze how mechanisms known to promote cooperation within a single group-including assortment, reciprocity, and population structure-alter evolutionary outcomes in the presence of competition among groups. We find that population structures most conducive to cooperation in multiscale systems can differ from those most conducive within a single group. Likewise, for competitive interactions with a continuous range of strategies we find that among-group selection may fail to produce socially optimal outcomes, but it can nonetheless produce second-best solutions that balance individual incentives to defect with the collective incentives for cooperation. We conclude by describing the broad applicability of multiscale evolutionary models to problems ranging from the production of diffusible metabolites in microbes to the management of common-pool resources in human societies.


Assuntos
Evolução Biológica , Comportamento Cooperativo , Humanos , Seleção Genética , Teoria dos Jogos
3.
PLoS Comput Biol ; 18(11): e1010670, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36409767

RESUMO

Levels of sociality in nature vary widely. Some species are solitary; others live in family groups; some form complex multi-family societies. Increased levels of social interaction can allow for the spread of useful innovations and beneficial information, but can also facilitate the spread of harmful contagions, such as infectious diseases. It is natural to assume that these contagion processes shape the evolution of complex social systems, but an explicit account of the dynamics of sociality under selection pressure imposed by contagion remains elusive. We consider a model for the evolution of sociality strategies in the presence of both a beneficial and costly contagion. We study the dynamics of this model at three timescales: using a susceptible-infectious-susceptible (SIS) model to describe contagion spread for given sociality strategies, a replicator equation to study the changing fractions of two different levels of sociality, and an adaptive dynamics approach to study the long-time evolution of the population level of sociality. For a wide range of assumptions about the benefits and costs of infection, we identify a social dilemma: the evolutionarily-stable sociality strategy (ESS) is distinct from the collective optimum-the level of sociality that would be best for all individuals. In particular, the ESS level of social interaction is greater (respectively less) than the social optimum when the good contagion spreads more (respectively less) readily than the bad contagion. Our results shed light on how contagion shapes the evolution of social interaction, but reveals that evolution may not necessarily lead populations to social structures that are good for any or all.


Assuntos
Comportamento Social , Humanos
4.
Bull Math Biol ; 84(11): 126, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36136162

RESUMO

In the study of the evolution of cooperation, many mechanisms have been proposed to help overcome the self-interested cheating that is individually optimal in the Prisoners' Dilemma game. These mechanisms include assortative or networked social interactions, other-regarding preferences considering the payoffs of others, reciprocity rules to establish cooperation as a social norm, and multilevel selection involving simultaneous competition between individuals favoring cheaters and competition between groups favoring cooperators. In this paper, we build on recent work studying PDE replicator equations for multilevel selection to understand how within-group mechanisms of assortment, other-regarding preferences, and both direct and indirect reciprocity can help to facilitate cooperation in concert with evolutionary competition between groups. We consider a group-structured population in which interactions between individuals consist of Prisoners' Dilemma games and study the dynamics of multilevel competition determined by the payoffs individuals receive when interacting according to these within-group mechanisms. We find that the presence of each of these mechanisms acts synergistically with multilevel selection for the promotion of cooperation, decreasing the strength of between-group competition required to sustain long-time cooperation and increasing the collective payoff achieved by the population. However, we find that only other-regarding preferences allow for the achievement of socially optimal collective payoffs for Prisoners' Dilemma games in which average payoff is maximized by an intermediate mix of cooperators and defectors. For the other three mechanisms, the multilevel dynamics remain susceptible to a shadow of lower-level selection, as the collective outcome fails to exceed the payoff of the all-cooperator group.


Assuntos
Evolução Biológica , Comportamento Cooperativo , Teoria dos Jogos , Humanos , Conceitos Matemáticos , Modelos Biológicos , Dilema do Prisioneiro
5.
Bull Math Biol ; 84(10): 109, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36030325

RESUMO

The evolution of complex cellular life involved two major transitions: the encapsulation of self-replicating genetic entities into cellular units and the aggregation of individual genes into a collectively replicating genome. In this paper, we formulate a minimal model of the evolution of proto-chromosomes within protocells. We model a simple protocell composed of two types of genes: a "fast gene" with an advantage for gene-level self-replication and a "slow gene" that replicates more slowly at the gene level, but which confers an advantage for protocell-level reproduction. Protocell-level replication capacity depends on cellular composition of fast and slow genes. We use a partial differential equation to describe how the composition of genes within protocells evolves over time under within-cell and between-cell competition, considering an infinite population of protocells that each contain infinitely many genes. We find that the gene-level advantage of fast replicators casts a long shadow on the multilevel dynamics of protocell evolution: no level of between-protocell competition can produce coexistence of the fast and slow replicators when the two genes are equally needed for protocell-level reproduction. By introducing a "dimer replicator" consisting of a linked pair of the slow and fast genes, we show analytically that coexistence between the two genes can be promoted in pairwise multilevel competition between fast and dimer replicators, and provide numerical evidence for coexistence in trimorphic competition between fast, slow, and dimer replicators. Our results suggest that dimerization, or the formation of a simple chromosome-like dimer replicator, can help to overcome the shadow of lower-level selection and work in concert with deterministic multilevel selection in protocells featuring high gene copy number to allow for the coexistence of two genes that are complementary at the protocell level but compete at the level of individual gene-level replication. These results for the PDE model complement existing results on the benefits of dimerization in the case of low genetic copy number, for which it has been shown that genetic linkage can help to overcome the stochastic loss of necessary genetic templates.


Assuntos
Células Artificiais , Cromossomos , Genoma , Conceitos Matemáticos , Modelos Biológicos
6.
J Math Biol ; 85(2): 12, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35864421

RESUMO

In many biological systems, natural selection acts simultaneously on multiple levels of organization. This scenario typically presents an evolutionary conflict between the incentive of individuals to cheat and the collective incentive to establish cooperation within a group. Generalizing previous work on multilevel selection in evolutionary game theory, we consider a hyperbolic PDE model of a group-structured population, in which members within a single group compete with each other for individual-level replication; while the group also competes against other groups for group-level replication. We derive a threshold level of the relative strength of between-group competition such that defectors take over the population below the threshold while cooperation persists in the long-time population above the threshold. Under stronger assumptions on the initial distribution of group compositions, we further prove that the population converges to a steady state density supporting cooperation for between-group selection strength above the threshold. We further establish long-time bounds on the time-average of the collective payoff of the population, showing that the long-run population cannot outperform the payoff of a full-cooperator group even in the limit of infinitely-strong between-group competition. When the group replication rate is maximized by an intermediate level of within-group cooperation, individual-level selection casts a long shadow on the dynamics of multilevel selection: no level of between-group competition can erase the effects of the individual incentive to defect. We further extend our model to study the case of multiple types of groups, showing how the games that groups play can coevolve with the level of cooperation.


Assuntos
Evolução Biológica , Teoria dos Jogos , Comportamento Cooperativo , Humanos , Seleção Genética
7.
Bull Math Biol ; 82(6): 66, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32474720

RESUMO

Here, we consider a game-theoretic model of multilevel selection in which individuals compete based on their payoff and groups also compete based on the average payoff of group members. Our focus is on multilevel social dilemmas: games in which individuals are best off cheating, while groups of individuals do best when composed of many cooperators. We analyze the dynamics of the two-level replicator dynamics, a nonlocal hyperbolic PDE describing deterministic birth-death dynamics for both individuals and groups. While past work on such multilevel dynamics has restricted attention to scenarios with exactly solvable within-group dynamics, we use comparison principles and an invariant property of the tail of the population distribution to extend our analysis to all possible two-player, two-strategy social dilemmas. In the Stag-Hunt and similar games with coordination thresholds, we show that any amount of between-group competition allows for fixation of cooperation in the population. For the prisoners' dilemma and Hawk-Dove game, we characterize the threshold level of between-group selection dividing a regime in which the population converges to a delta function at the equilibrium of the within-group dynamics from a regime in which between-group competition facilitates the existence of steady-state densities supporting greater levels of cooperation. In particular, we see that the threshold selection strength and average payoff at steady state depend on a tug-of-war between the individual-level incentive to be a defector in a many-cooperator group and the group-level incentive to have many cooperators over many defectors. We also find that lower-level selection casts a long shadow: If groups are best off with a mix of cooperators and defectors, then there will always be fewer cooperators than optimal at steady state, even in the limit of infinitely strong competition between groups.


Assuntos
Teoria dos Jogos , Modelos Psicológicos , Dilema do Prisioneiro , Comportamento Social , Evolução Biológica , Comportamento Competitivo , Biologia Computacional , Simulação por Computador , Comportamento Cooperativo , Humanos , Conceitos Matemáticos , Processos Estocásticos
8.
J Math Biol ; 79(1): 101-154, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30963211

RESUMO

We consider a stochastic model for evolution of group-structured populations in which interactions between group members correspond to the Prisoner's Dilemma or the Hawk-Dove game. Selection operates at two organization levels: individuals compete with peer group members based on individual payoff, while groups also compete with other groups based on average payoff of group members. In the Prisoner's Dilemma, this creates a tension between the two levels of selection, as defectors are favored at the individual level, whereas groups with at least some cooperators outperform groups of defectors at the between-group level. In the limit of infinite group size and infinite number of groups, we derive a non-local PDE that describes the probability distribution of group compositions in the population. For special families of payoff matrices, we characterize the long-time behavior of solutions of our equation, finding a threshold intensity of between-group selection required to sustain density steady states and the survival of cooperation. When all-cooperator groups are most fit, the average and most abundant group compositions at steady state range from featuring all-defector groups when individual-level selection dominates to featuring all-cooperator groups when group-level selection dominates. When the most fit groups have a mix of cooperators and defectors, then the average and most abundant group compositions always feature a smaller fraction of cooperators than required for the optimal mix, even in the limit where group-level selection is infinitely stronger than individual-level selection. In such cases, the conflict between the two levels of selection cannot be decoupled, and cooperation cannot be sustained at all in the case where between-group competition favors an even mix of cooperators and defectors.


Assuntos
Comportamento de Escolha , Teoria dos Jogos , Modelos Psicológicos , Dilema do Prisioneiro , Simulação por Computador , Comportamento Cooperativo , Humanos , Probabilidade , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...