Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Biol Open ; 13(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38180242

RESUMO

Hypercapnia increases cerebral blood flow. The effects on cerebral metabolism remain incompletely understood although studies show an oxidation of cytochrome c oxidase, Complex IV of the mitochondrial respiratory chain. Systems modelling was combined with previously published non-invasive measurements of cerebral tissue oxygenation, cerebral blood flow, and cytochrome c oxidase redox state to evaluate any metabolic effects of hypercapnia. Cerebral tissue oxygen saturation and cytochrome oxidase redox state were measured with broadband near infrared spectroscopy and cerebral blood flow velocity with transcranial Doppler ultrasound. Data collected during 5-min hypercapnia in awake human volunteers were analysed using a Fick model to determine changes in brain oxygen consumption and a mathematical model of cerebral hemodynamics and metabolism (BrainSignals) to inform on mechanisms. Either a decrease in metabolic substrate supply or an increase in metabolic demand modelled the cytochrome oxidation in hypercapnia. However, only the decrease in substrate supply explained both the enzyme redox state changes and the Fick-calculated drop in brain oxygen consumption. These modelled outputs are consistent with previous reports of CO2 inhibition of mitochondrial succinate dehydrogenase and isocitrate dehydrogenase. Hypercapnia may have physiologically significant effects suppressing oxidative metabolism in humans and perturbing mitochondrial signalling pathways in health and disease.


Assuntos
Dióxido de Carbono , Hipercapnia , Humanos , Complexo IV da Cadeia de Transporte de Elétrons , Consumo de Oxigênio , Encéfalo
2.
J Athl Train ; 59(3): 317-324, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37347152

RESUMO

CONTEXT: Cold-water immersion (CWI) has been reported to reduce tissue metabolism postimmersion, but physiological data are lacking regarding the muscle metabolic response to its application. Near-infrared spectroscopy (NIRS) is a noninvasive optical technique that can inform muscle hemodynamics and tissue metabolism. OBJECTIVE: To investigate the effects of CWI at 2 water temperatures (10°C and 15°C) on NIRS-calculated measurements of muscle oxygen consumption (mVO2). DESIGN: Crossover study. SETTING: University sports rehabilitation center. PATIENTS OR OTHER PARTICIPANTS: A total of 11 male National Collegiate Athletic Association Division II long-distance runners (age = 23.4 ± 3.4 years, height = 1.8 ± 0.1 m, mass = 68.8 ± 10.7 kg, mean adipose tissue thickness = 6.7 ± 2.7 mm). INTERVENTION(S): Cold-water immersion at 10°C and 15°C for 20 minutes. MAIN OUTCOME MEASURE(S): We calculated mVO2 preimmersion and postimmersion at water temperatures of 10°C and 15°C. Changes in tissue oxyhemoglobin (O2Hb), deoxyhemoglobin (HHb), total hemoglobin (tHb), hemoglobin difference (Hbdiff), and tissue saturation index (TSI %) were measured during the 20-minute immersion at both temperatures. RESULTS: We observed a decrease in mVO2 after immersion at both 10°C and 15°C (F1,9 = 27.7801, P = .001). During the 20-minute immersion at both temperatures, we noted a main effect of time for O2Hb (F3,27 = 14.227, P = .001), HHb (F3,27 = 5.749, P = .009), tHb (F3,27 = 24.786, P = .001), and Hbdiff (F3,27 = 3.894, P = .020), in which values decreased over the course of immersion. Post hoc pairwise comparisons showed that these changes occurred within the final 5 minutes of immersion for tHb and O2Hb. CONCLUSIONS: A 20-minute CWI at 10°C and 15°C led to a reduction in mVO2. This was greater after immersion at 10°C. The reduction in mVO2 suggests a decrease in muscle metabolic activity (ie, O2 use after CWI). Calculating mVO2 via the NIRS-occlusion technique may offer further insight into muscle metabolic responses beyond what is attainable from observing the NIRS primary signals.


Assuntos
Imersão , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Masculino , Adulto Jovem , Adulto , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Estudos Cross-Over , Músculo Esquelético/fisiologia , Água , Temperatura Baixa , Hemoglobinas/metabolismo , Oxiemoglobinas/metabolismo , Extremidade Inferior , Consumo de Oxigênio/fisiologia , Atletas
3.
Front Chem ; 9: 707797, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381760

RESUMO

In order to use a Hemoglobin Based Oxygen Carrier as an oxygen therapeutic or blood substitute, it is necessary to increase the size of the hemoglobin molecule to prevent rapid renal clearance. A common method uses maleimide PEGylation of sulfhydryls created by the reaction of 2-iminothiolane at surface lysines. However, this creates highly heterogenous mixtures of molecules. We recently engineered a hemoglobin with a single novel, reactive cysteine residue on the surface of the alpha subunit creating a single PEGylation site (ßCys93Ala/αAla19Cys). This enabled homogenous PEGylation by maleimide-PEG with >80% efficiency and no discernible effect on protein function. However, maleimide-PEG adducts are subject to deconjugation via retro-Michael reactions and cross-conjugation to endogenous thiol species in vivo. We therefore compared our maleimide-PEG adduct with one created using a mono-sulfone-PEG less susceptible to deconjugation. Mono-sulfone-PEG underwent reaction at αAla19Cys hemoglobin with > 80% efficiency, although some side reactions were observed at higher PEG:hemoglobin ratios; the adduct bound oxygen with similar affinity and cooperativity as wild type hemoglobin. When directly compared to maleimide-PEG, the mono-sulfone-PEG adduct was significantly more stable when incubated at 37°C for seven days in the presence of 1 mM reduced glutathione. Hemoglobin treated with mono-sulfone-PEG retained > 90% of its conjugation, whereas for maleimide-PEG < 70% of the maleimide-PEG conjugate remained intact. Although maleimide-PEGylation is certainly stable enough for acute therapeutic use as an oxygen therapeutic, for pharmaceuticals intended for longer vascular retention (weeks-months), reagents such as mono-sulfone-PEG may be more appropriate.

4.
Biomater Sci ; 8(14): 3896-3906, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32539053

RESUMO

In order to infuse hemoglobin into the vasculature as an oxygen therapeutic or blood substitute, it is necessary to increase the size of the molecule to enhance vascular retention. This aim can be achieved by PEGylation. However, using non-specific conjugation methods creates heterogenous mixtures and alters protein function. Site-specific PEGylation at the naturally reactive thiol on human hemoglobin (ßCys93) alters hemoglobin oxygen binding affinity and increases its autooxidation rate. In order to avoid this issue, new reactive thiol residues were therefore engineered at sites distant to the heme group and the α/ß dimer/dimer interface. The two mutants were ßCys93Ala/αAla19Cys and ßCys93Ala/ßAla13Cys. Gel electrophoresis, size exclusion chromatography and mass spectrometry revealed efficient PEGylation at both αAla19Cys and ßAla13Cys, with over 80% of the thiols PEGylated in the case of αAla19Cys. For both mutants there was no significant effect on the oxygen affinity or the cooperativity of oxygen binding. PEGylation at αAla19Cys had the additional benefit of decreasing the rates of autoxidation and heme release, properties that have been considered contributory factors to the adverse clinical side effects exhibited by previous hemoglobin based oxygen carriers. PEGylation at αAla19Cys may therefore be a useful component of future clinical products.


Assuntos
Hemoglobinas , Polietilenoglicóis , Cromatografia em Gel , Heme , Humanos , Oxigênio
5.
Free Radic Biol Med ; 134: 106-118, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30594736

RESUMO

Hemoglobin (Hb)-based oxygen carriers (HBOC) are modified extracellular proteins, designed to replace or augment the oxygen-carrying capacity of erythrocytes. However, clinical results have generally been disappointing due to adverse side effects, in part linked to the intrinsic oxidative toxicity of Hb. Previously a redox-active tyrosine residue was engineered into the Hb ß subunit (ßF41Y) to facilitate electron transfer between endogenous antioxidants such as ascorbate and the oxidative ferryl heme species, converting the highly oxidizing ferryl species into the less reactive ferric (met) form. We inserted different single tyrosine mutations into the α and ß subunits of Hb to determine if this effect of ßF41Y was unique. Every mutation that was inserted within electron transfer range of the protein surface and the heme increased the rate of ferryl reduction. However, surprisingly, three of the mutations (ßT84Y, αL91Y and ßF85Y) also increased the rate of ascorbate reduction of ferric(met) Hb to ferrous(oxy) Hb. The rate enhancement was most evident at ascorbate concentrations equivalent to that found in plasma (< 100 µM), suggesting that it might be of benefit in decreasing oxidative stress in vivo. The most promising mutant (ßT84Y) was stable with no increase in autoxidation or heme loss. A decrease in membrane damage following Hb addition to HEK cells correlated with the ability of ßT84Y to maintain the protein in its oxygenated form. When PEGylated and injected into mice, ßT84Y was shown to have an increased vascular half time compared to wild type PEGylated Hb. ßT84Y represents a new class of mutations with the ability to enhance reduction of both ferryl and ferric Hb, and thus has potential to decrease adverse side effects as one component of a final HBOC product.


Assuntos
Substitutos Sanguíneos/química , Heme/química , Hemoglobinas/química , Ferro/química , Estresse Oxidativo , Oxigênio/metabolismo , Tirosina/química , Animais , Ácido Ascórbico/metabolismo , Substitutos Sanguíneos/metabolismo , Transporte de Elétrons , Células HEK293 , Hemoglobinas/genética , Humanos , Metemoglobina/química , Camundongos , Camundongos Nus , Oxirredução , Oxiemoglobinas/química , Tirosina/genética
6.
Sports Med Open ; 4(1): 44, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30291523

RESUMO

BACKGROUND: Pseudoephedrine (PSE), a sympathomimetic drug, commonly used in nasal decongestants, is currently banned in sports by the World Anti-Doping Agency (WADA), as its stimulant activity is claimed to enhance performance. This meta-analysis described the effects of PSE on factors relating to sport performance. METHODS: All included studies were randomised placebo-controlled trials and were conducted in a double blind crossover fashion. All participants (males and females) were deemed to be healthy. For the primary analysis, standardised mean difference effect sizes (ES) were calculated for heart rate (HR), time trial (TT) performance, rating of perceived exertion, blood glucose, and blood lactate. RESULTS: Across all parameters, effects were trivial with the exception of HR, which showed a small positive increase in favour of PSE ingestion (ES = 0.43; 95% confidence interval: - 0.01 to 0.88). However, subgroup analyses revealed important trends. Effect sizes for HR (increase) and TT (quicker) were larger in well-trained (VO2 max (maximal oxygen consumption) ≥ 65 ml/kg/min) and younger (< 28 years) participants, for shorter (< 25 mins) bouts of exercise and when PSE was administered less than 90 min prior to performance. There was evidence of a dose-response effect for TT and HR with larger doses (> 170 mg) resulting in small (ES = - 0.24) and moderate (ES = 0.85) effect sizes respectively for these variables. CONCLUSIONS: We conclude, however, that the performance benefit of pseudoephedrine is marginal and likely to be less than that obtained from permitted stimulants such as caffeine.

7.
Free Radic Biol Med ; 124: 299-310, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29920341

RESUMO

Hemoglobin-based oxygen carriers (HBOCs) are an investigational replacement for blood transfusions and are known to cause oxidative damage to tissues. To investigate the correlation between their oxygen binding properties and these detrimental effects, we investigated two PEGylated HBOCs endowed with different oxygen binding properties - but otherwise chemically identical - in a Guinea pig transfusion model. Plasma samples were analyzed for biochemical markers of inflammation, tissue damage and organ dysfunction; proteins and lipids of heart and kidney extracts were analyzed for markers of oxidative damage. Overall, both HBOCs produced higher oxidative stress in comparison to an auto-transfusion control group. Particularly, tissue 4-hydroxynonenal adducts, tissue malondialdehyde adducts and plasma 8-oxo-2'-deoxyguanosine exhibited significantly higher levels in comparison with the control group. For malondialdehyde adducts, a higher level in the renal tissue was observed for animals treated with the high-affinity HBOC, hinting at a correlation between the HBOCs oxygen binding properties and the oxidative stress they produce. Moreover, we found that the high-affinity HBOC produced greater tissue oxygenation in comparison with the low affinity one, possibly correlating with the higher oxidative stress it induced.


Assuntos
Substitutos Sanguíneos/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Animais , Cobaias , Humanos , Modelos Animais
8.
Biosci Rep ; 38(4)2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29802155

RESUMO

Hemoglobin (Hb)-based oxygen carriers (HBOCs) have been engineered to replace or augment the oxygen carrying capacity of erythrocytes. However, clinical results have generally been disappointing, in part due to the intrinsic oxidative toxicity of Hb. The most common HBOC starting material is adult human or bovine Hb. However, it has been suggested that fetal Hb may offer advantages due to decreased oxidative reactivity. Large-scale manufacturing of HBOC will likely and ultimately require recombinant sources of human proteins. We, therefore, directly compared the functional properties and oxidative reactivity of recombinant fetal (rHbF) and recombinant adult (rHbA) Hb. rHbA and rHbF produced similar yields of purified functional protein. No differences were seen in the two proteins in: autoxidation rate; the rate of hydrogen peroxide reaction; NO scavenging dioxygenase activity; and the NO producing nitrite reductase activity. The rHbF protein was: less damaged by low levels of hydrogen peroxide; less damaging when added to human umbilical vein endothelial cells (HUVEC) in the ferric form; and had a slower rate of intrinsic heme loss. The rHbA protein was: more readily reducible by plasma antioxidants such as ascorbate in both the reactive ferryl and ferric states; less readily damaged by lipid peroxides; and less damaging to phosphatidylcholine liposomes. In conclusion in terms of oxidative reactivity, there are advantages and disadvantages to the use of rHbA or rHbF as the basis for an effective HBOC.


Assuntos
Substitutos Sanguíneos/metabolismo , Hemoglobina Fetal/metabolismo , Hemoglobinas/metabolismo , Adulto , Animais , Células Endoteliais da Veia Umbilical Humana , Humanos , Óxido Nítrico/metabolismo , Oxirredução , Estresse Oxidativo , Proteínas Recombinantes/metabolismo
9.
PeerJ ; 6: e4393, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29692951

RESUMO

The development of an underwater near-infrared spectroscopy (uNIRS) device has enabled previously unattainable measurements of peripheral muscle hemodynamics and oxygenation to be taken within the natural aquatic environment. The purposes of this study were (i) to trial the use of uNIRS, in a real world training study, and (ii) to monitor the effects of a swim training program upon muscle oxygenation status in short distance swimming. A total of 14 junior club level swimmers completed a repeated swim sprint test before and after an eight week endurance training program. A waterproof, portable Near-Infrared Spectroscopy device was attached to the vastus lateralis. uNIRS successfully measured changes in muscle oxygenation and blood volume in all individuals; rapid sub-second time resolution of the device was able to demonstrate muscle oxygenation changes during the characteristic swim movements. Post training heart rate recovery and swim performance time were significantly improved. uNIRS data also showed significant changes. A larger rise in deoxyhemoglobin during individual sprints suggested training induced an increase in muscle oxygen extraction; a faster recovery time for muscle oxygenation suggested positive training induced changes and significant changes in muscle blood flow also occur. As a strong correlation was seen between an increased reoxygenation rate and an improved swim performance time, these findings support the use of uNIRS as a new performance analysis tool in swimming.

10.
J Biomed Opt ; 23(1): 1-14, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29368457

RESUMO

The purpose of the study was to compare muscle oxygenation as measured by two portable, wireless near-infrared spectroscopy (NIRS) devices under resting and dynamic conditions. A recently developed low-cost NIRS device (MOXY) was compared against an established PortaMon system that makes use of the spatially resolved spectroscopy algorithm. The influence of increasing external pressure on tissue oxygen saturation index (TSI) indicated that both devices are stable between 2 and 20 mmHg. However, above this pressure, MOXY reports declining TSI values. Analysis of adipose tissue thickness (ATT) and TSI shows a significant, nonlinear difference between devices at rest. The devices report similar TSI (%) values at a low ATT (<7 mm) (PortaMon minus MOXY difference is +1.1±2.8%) with the major subsequent change between the devices occurring between 7 and 10 mm; at ATT values >10 mm the difference remains constant (-14.7±2.8%). The most likely explanation for this difference is the small source-detector separation (2.5 cm) in the MOXY resulting in lower tissue penetration into muscle in subjects with higher ATT. Interday test-retest reliability of resting TSI was evaluated on five separate occasions, with the PortaMon reporting a lower coefficient of variation (1.8% to 2.5% versus 5.7% to 6.2%). In studies on male subjects with low ATT, decreases in the TSI were strongly correlated during isometric exercise, arterial occlusion, and incremental arm crank exercise. However, the MOXY reports a greater dynamic range, particularly during ischemia induced by isometric contraction or occlusion (Δ74.3% versus Δ43.7%; hyperemia MAX-occlusion MIN). This study shows that in this subject group both MOXY and PortaMon produce physiologically credible TSI measures during rest and exercise. However, the absolute values obtained during exercise are generally not comparable between devices unless corrected by physiological calibration following an arterial occlusion.


Assuntos
Exercício Físico/fisiologia , Músculo Esquelético , Oximetria/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto , Humanos , Contração Isométrica/fisiologia , Masculino , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Oxigênio/metabolismo , Consumo de Oxigênio/fisiologia , Descanso/fisiologia , Adulto Jovem
11.
Free Radic Biol Med ; 103: 95-106, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28007575

RESUMO

Covalent hemoglobin binding to membranes leads to band 3 (AE1) clustering and the removal of erythrocytes from the circulation; it is also implicated in blood storage lesions. Damaged hemoglobin, with the heme being in a redox and oxygen-binding inactive hemichrome form, has been implicated as the binding species. However, previous studies used strong non-physiological oxidants. In vivo hemoglobin is constantly being oxidised to methemoglobin (ferric), with around 1% of hemoglobin being in this form at any one time. In this study we tested the ability of the natural oxidised form of hemoglobin (methemoglobin) in the presence or absence of the physiological oxidant hydrogen peroxide to initiate membrane binding. The higher the oxidation state of hemoglobin (from Fe(III) to Fe(V)) the more binding was observed, with approximately 50% of this binding requiring reactive sulphydryl groups. The hemoglobin bound was in a high molecular weight complex containing spectrin, ankyrin and band 4.2, which are common to one of the cytoskeletal nodes. Unusually, we showed that hemoglobin bound in this way was redox active and capable of ligand binding. It can initiate lipid peroxidation showing the potential to cause cell damage. In vivo oxidative stress studies using extreme endurance exercise challenges showed an increase in hemoglobin membrane binding, especially in older cells with lower levels of antioxidant enzymes. These are then targeted for destruction. We propose a model where mild oxidative stress initiates the binding of redox active hemoglobin to the membrane. The maximum lifetime of the erythrocyte is thus governed by the redox activity of the cell; from the moment of its release into the circulation the timer is set.


Assuntos
Membrana Eritrocítica/metabolismo , Hemoglobinas/metabolismo , Adulto , Monóxido de Carbono/metabolismo , Membrana Eritrocítica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Cinética , Peroxidação de Lipídeos , Masculino , Estresse Oxidativo , Ligação Proteica , Corrida
12.
Front Physiol ; 7: 619, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018244

RESUMO

Due to the technical nature of speed skating, that is affecting physiological mechanisms such as oxygenation and blood flow, this sport provides a unique setting allowing us to uncover novel mechanistic insights of the physiological response to exercise in elite middle-distance and endurance sports. The present study aimed to examine the influence of skating mode (short-track vs. long-track) on muscle oxygenation, perceived fatigue, and recovery in elite speed skating. Muscle oxygenation of 12 talented short-track speed skaters was continuously monitored during a long-track (LT) and a short-track (ST) skating time-trial of maximal effort using near-infrared spectroscopy (NIRS) on the m. vastus lateralis for both legs. Video captures were made of each testing session for further interpretation of the muscle oxygenation. To determine recovery, perceived exertion was measured 2 and 4 h after each testing sessions. Repeated measures ANOVA's were used for statistical analysis (p < 0.05). After a rapid desaturation in both legs directly after the start, an asymmetry in muscle oxygenation between both legs was found during LT (tissue saturation-index (TSI%)-slope: left = 0.053 ± 0.032; right = 0.023 ± 0.020, p < 0.05) and ST speed skating (TSI%-slope: left = 0.050 ± 0.052, right = 0.001 ± 0.053, p < 0.05). Resaturation of the right leg was relatively lower in ST compared to LT. For the left leg, no difference was found between skating modes in muscle oxygenation. Respectively, two (ST = 5.8 ± 2.0; LT = 4.2 ± 1.5) and 4 h (ST = 4.6 ± 1.9; LT = 3.1 ± 1.6) after the time-trials, a higher rate of perceived exertion was found for ST. Based on our results, ST seems more physiologically demanding, and longer periods of recovery are needed after training compared to LT. Technical aspects unique to the exercise mode seem to impact on oxygenation, affecting processes related to the regulation of exercise intensity such as fatigue and recovery.

13.
Biochem J ; 473(19): 3371-83, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27470146

RESUMO

Hemoglobin (Hb)-based oxygen carriers (HBOC) have been engineered to replace or augment the oxygen-carrying capacity of erythrocytes. However, clinical results have generally been disappointing due to adverse side effects linked to intrinsic heme-mediated oxidative toxicity and nitric oxide (NO) scavenging. Redox-active tyrosine residues can facilitate electron transfer between endogenous antioxidants and oxidative ferryl heme species. A suitable residue is present in the α-subunit (Y42) of Hb, but absent from the homologous position in the ß-subunit (F41). We therefore replaced this residue with a tyrosine (ßF41Y, Hb Mequon). The ßF41Y mutation had no effect on the intrinsic rate of lipid peroxidation as measured by conjugated diene and singlet oxygen formation following the addition of ferric(met) Hb to liposomes. However, ßF41Y significantly decreased these rates in the presence of physiological levels of ascorbate. Additionally, heme damage in the ß-subunit following the addition of the lipid peroxide hydroperoxyoctadecadieoic acid was five-fold slower in ßF41Y. NO bioavailability was enhanced in ßF41Y by a combination of a 20% decrease in NO dioxygenase activity and a doubling of the rate of nitrite reductase activity. The intrinsic rate of heme loss from methemoglobin was doubled in the ß-subunit, but unchanged in the α-subunit. We conclude that the addition of a redox-active tyrosine mutation in Hb able to transfer electrons from plasma antioxidants decreases heme-mediated oxidative reactivity and enhances NO bioavailability. This class of mutations has the potential to decrease adverse side effects as one component of a HBOC product.


Assuntos
Substitutos Sanguíneos , Hemoglobinas/química , Tirosina/química , Transporte de Elétrons , Lipídeos/química , Mutação , Oxirredução , Estresse Oxidativo , Tirosina/genética
14.
Adv Exp Med Biol ; 876: 121-127, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26782203

RESUMO

The brain responds to hypoxia with an increase in cerebral blood flow (CBF). However, such an increase is generally believed to start only after the oxygen tension decreases to a certain threshold level. Although many mechanisms (different vasodilator and different generation and metabolism mechanisms of the vasodilator) have been proposed at the molecular level, none of them has gained universal acceptance. Nitric oxide (NO) has been proposed to play a central role in the regulation of oxygen supply since it is a vasodilator whose production and metabolism are both oxygen dependent. We have used a computational model that simulates blood flow and oxygen metabolism in the brain (BRAINSIGNALS) to test mechanism by which NO may elucidate hypoxic vasodilation. The first model proposed that NO was produced by the enzyme nitric oxide synthase (NOS) and metabolized by the mitochondrial enzyme cytochrome c oxidase (CCO). NO production declined with decreasing oxygen concentration given that oxygen is a substrate for nitric oxide synthase (NOS). However, this was balanced by NO metabolism by CCO, which also declined with decreasing oxygen concentration. However, the NOS effect was dominant; the resulting model profiles of hypoxic vasodilation only approximated the experimental curves when an unfeasibly low K m for oxygen for NOS was input into the model. We therefore modified the model such that NO generation was via the nitrite reductase activity of deoxyhemoglobin instead of NOS, whilst keeping the metabolism of NO by CCO the same. NO production increased with decreasing oxygen concentration, leading to an improved reproduction of the experimental CBF versus PaO2 curve. However, the threshold phenomenon was not perfectly reproduced. In this present work, we incorporated a wider variety of oxygen dependent and independent NO production and removal mechanisms. We found that the addition of NO removal via oxidation to nitrate mediated by oxyhemoglobin resulted in the optimum fit of the threshold phenomenon by the model. Our revised model suggests, but does not prove, that changes in NO concentration can be the primary cause of the relationship between pO2 and cerebral blood flow.


Assuntos
Hemoglobinas/metabolismo , Hipóxia/fisiopatologia , Óxido Nítrico/fisiologia , Vasodilatação/fisiologia , Circulação Cerebrovascular , Simulação por Computador , Humanos
15.
PLoS One ; 10(10): e0140171, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26445281

RESUMO

Hypoxia-ischaemia (HI) is a major cause of neonatal brain injury, often leading to long-term damage or death. In order to improve understanding and test new treatments, piglets are used as preclinical models for human neonates. We have extended an earlier computational model of piglet cerebral physiology for application to multimodal experimental data recorded during episodes of induced HI. The data include monitoring with near-infrared spectroscopy (NIRS) and magnetic resonance spectroscopy (MRS), and the model simulates the circulatory and metabolic processes that give rise to the measured signals. Model extensions include simulation of the carotid arterial occlusion used to induce HI, inclusion of cytoplasmic pH, and loss of metabolic function due to cell death. Model behaviour is compared to data from two piglets, one of which recovered following HI while the other did not. Behaviourally-important model parameters are identified via sensitivity analysis, and these are optimised to simulate the experimental data. For the non-recovering piglet, we investigate several state changes that might explain why some MRS and NIRS signals do not return to their baseline values following the HI insult. We discover that the model can explain this failure better when we include, among other factors such as mitochondrial uncoupling and poor cerebral blood flow restoration, the death of around 40% of the brain tissue.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Circulação Cerebrovascular , Simulação por Computador , Hipóxia-Isquemia Encefálica/fisiopatologia , Modelos Biológicos , Animais , Animais Recém-Nascidos , Encéfalo/fisiopatologia , Humanos , Hipóxia-Isquemia Encefálica/metabolismo , Espectroscopia de Ressonância Magnética , Espectroscopia de Luz Próxima ao Infravermelho , Suínos
16.
PLoS One ; 10(3): e0120338, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25807517

RESUMO

This study examined the effects of Sprint Interval Cycling (SIT) on muscle oxygenation kinetics and performance during the 30-15 intermittent fitness test (IFT). Twenty-five women hockey players of Olympic standard were randomly selected into an experimental group (EXP) and a control group (CON). The EXP group performed six additional SIT sessions over six weeks in addition to their normal training program. To explore the potential training-induced change, EXP subjects additionally completed 5 x 30s maximal intensity cycle testing before and after training. During these tests near-infrared spectroscopy (NIRS) measured parameters; oxyhaemoglobin + oxymyoglobin (HbO2+ MbO2), tissue deoxyhaemoglobin + deoxymyoglobin (HHb+HMb), total tissue haemoglobin (tHb) and tissue oxygenation (TSI %) were taken. In the EXP group (5.34 ± 0.14 to 5.50 ± 0.14 m.s(-1)) but not the CON group (pre = 5.37 ± 0.27 to 5.39 ± 0.30 m.s(-1)) significant changes were seen in the 30-15 IFT performance. EXP group also displayed significant post-training increases during the sprint cycling: ΔTSI (-7.59 ± 0.91 to -12.16 ± 2.70%); ΔHHb+HMb (35.68 ± 6.67 to 69.44 ± 26.48 µM.cm); and ΔHbO2+ MbO2 (-74.29 ± 13.82 to -109.36 ± 22.61 µM.cm). No significant differences were seen in ΔtHb (-45.81 ± 15.23 to -42.93 ± 16.24). NIRS is able to detect positive peripheral muscle oxygenation changes when used during a SIT protocol which has been shown to be an effective training modality within elite athletes.


Assuntos
Ciclismo/fisiologia , Hóquei/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Oxigênio/metabolismo , Adulto , Atletas , Desempenho Atlético/fisiologia , Teste de Esforço/métodos , Feminino , Hemoglobinas/metabolismo , Humanos , Consumo de Oxigênio/fisiologia , Oxiemoglobinas/metabolismo , Educação Física e Treinamento/métodos , Adulto Jovem
17.
J Biomed Opt ; 19(12): 127002, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25478871

RESUMO

The purpose of this research was to waterproof a near-infrared spectroscopy device (PortaMon, Artinis Medical Systems) to enable NIR measurement during swim exercise. Candidate materials were initially tested for waterproof suitability by comparing light intensity values during phantom-based tissue assessment. Secondary assessment involved repeated isokinetic exercises ensuring reliability of the results obtained from the modified device. Tertiary assessment required analysis of the effect of water immersion and temperature upon device function. Initial testing revealed that merely covering the PortaMon light sources with waterproof materials considerably affected the NIR light intensities. Modifying a commercially available silicone covering through the addition of a polyvinyl chloride material (impermeable to NIR light transmission) produces an acceptable compromise. Bland­Altman analysis indicated that exercise-induced changes in tissue saturation index (TSI %) were within acceptable limits during laboratory exercise. Although water immersion had a small but significant effect upon NIR light intensity, this resulted in a negligible change in the measured TSI (%). We then tested the waterproof device in vivo illustrating oxygenation changes during a 100 m freestyle swim case study. Finally, a full study compared club level swimmers and triathletes. Significant changes in oxygenation profiles when comparing upper and lower extremities for the two groups were revealed, reflecting differences in swim biomechanics.


Assuntos
Músculos/química , Oxiemoglobinas/análise , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Natação/fisiologia , Água , Adulto , Feminino , Humanos , Masculino , Músculos/fisiologia , Imagens de Fantasmas , Reprodutibilidade dos Testes , Adulto Jovem
18.
Biochim Biophys Acta ; 1837(11): 1882-1891, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25175349

RESUMO

We re-determined the near infrared (NIR) spectral signatures (650-980nm) of the different cytochrome c oxidase redox centres, in the process separating them into their component species. We confirm that the primary contributor to the oxidase NIR spectrum between 700 and 980nm is cupric CuA, which in the beef heart enzyme has a maximum at 835nm. The 655nm band characterises the fully oxidised haem a3/CuB binuclear centre; it is bleached either when one or more electrons are added to the binuclear centre or when the latter is modified by ligands. The resulting 'perturbed' binuclear centre is also characterised by a previously unreported broad 715-920nm band. The NIR spectra of certain stable liganded species (formate and CO), and the unstable oxygen reaction compounds P and F, are similar, suggesting that the latter may resemble the stable species electronically. Oxidoreduction of haem a makes no contribution either to the 835nm maximum or the 715nm band. Our results confirm the ability of NIRS to monitor the CuA centre of cytochrome oxidase activity in vivo, although noting some difficulties in precise quantitative interpretations in the presence of perturbations of the haem a3/CuB binuclear centre.

19.
Nitric Oxide ; 42: 32-9, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25172022

RESUMO

The nitrite adducts of globins can potentially bind via O- or N- linkage to the heme iron. We have used EPR (electron paramagnetic resonance) and DFT (density functional theory) to explore these binding modes to myoglobin and hemoglobin. We demonstrate that the nitrite adducts of both globins have detectable EPR signals; we provide an explanation for the difficulty in detecting these EPR features, based on uniaxial state considerations. The EPR and DFT data show that both nitrite linkage isomers can be present at the same time and that the two isomers are readily interconvertible in solution. The millisecond-scale process of nitrite reduction by Hb is investigated in search of the elusive Fe(II)-nitrite adduct.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Globinas/metabolismo , Nitritos/metabolismo , Isomerismo , Oxirredução , Espectrofotometria Ultravioleta
20.
Neuroimage ; 85 Pt 1: 234-44, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23707584

RESUMO

The redox state of cerebral mitochondrial cytochrome c oxidase monitored with near-infrared spectroscopy (Δ[oxCCO]) is a signal with strong potential as a non-invasive, bedside biomarker of cerebral metabolic status. We hypothesised that the higher mitochondrial density of brain compared to skin and skull would lead to evidence of brain-specificity of the Δ[oxCCO] signal when measured with a multi-distance near-infrared spectroscopy (NIRS) system. Measurements of Δ[oxCCO] as well as of concentration changes in oxygenated (Δ[HbO2]) and deoxygenated haemoglobin (Δ[HHb]) were taken at multiple source-detector distances during systemic hypoxia and hypocapnia (decrease in cerebral oxygen delivery), and hyperoxia and hypercapnia (increase in cerebral oxygen delivery) from 15 adult healthy volunteers. Increasing source-detector spacing is associated with increasing light penetration depth and thus higher sensitivity to cerebral changes. An increase in Δ[oxCCO] was observed during the challenges that increased cerebral oxygen delivery and the opposite was observed when cerebral oxygen delivery decreased. A consistent pattern of statistically significant increasing amplitude of the Δ[oxCCO] response with increasing light penetration depth was observed in all four challenges, a behaviour that was distinctly different from that of the haemoglobin chromophores, which did not show this statistically significant depth gradient. This depth-dependence of the Δ[oxCCO] signal corroborates the notion of higher concentrations of CCO being present in cerebral tissue compared to extracranial components and highlights the value of NIRS-derived Δ[oxCCO] as a brain-specific signal of cerebral metabolism, superior in this aspect to haemoglobin.


Assuntos
Química Encefálica/fisiologia , Encéfalo/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Hemoglobinas/metabolismo , Consumo de Oxigênio/fisiologia , Adulto , Algoritmos , Biomarcadores , Encéfalo/anatomia & histologia , Carboxihemoglobina/análise , Carboxihemoglobina/metabolismo , Feminino , Neuroimagem Funcional/métodos , Humanos , Hipercapnia/fisiopatologia , Hiperóxia/fisiopatologia , Hipocapnia/fisiopatologia , Hipóxia/fisiopatologia , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica , Oximetria/instrumentação , Oximetria/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...