Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 301: 122243, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37480759

RESUMO

Lipid nanoparticles (LNPs) have shown great promise as delivery vehicles to transport messenger ribonucleic acid (mRNA) into cells and act as vaccines for infectious diseases including COVID-19 and influenza. The ionizable lipid incorporated within the LNP is known to be one of the main driving factors for potency and tolerability. Herein, we describe a novel family of ionizable lipids synthesized with a piperazine core derived from the HEPES Good buffer. These ionizable lipids have unique asymmetric tails and two dissimilar degradable moieties incorporated within the structure. Lipids tails of varying lengths, degrees of unsaturation, branching, and the inclusion of additional ester moieties were evaluated for protein expression. We observed several key lipid structure activity relationships that correlated with improved protein production in vivo, including lipid tails of 12 carbons on the ester side and the effect of carbon spacing on the disulfide arm of the lipids. Differences in LNP physical characteristics were observed for lipids containing an extra ester moiety. The LNP structure and lipid bilayer packing, visualized through Cryo-TEM, affected the amount of protein produced in vivo. In non-human primates, the Good HEPES LNPs formulated with an mRNA encoding an influenza hemagglutinin (HA) antigen successfully generated functional HA inhibition (HAI) antibody titers comparable to the industry standards MC3 and SM-102 LNPs, demonstrating their promise as a potential vaccine.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Animais , Humanos , HEPES , Bicamadas Lipídicas , Carbono , Ésteres , Vacinas de mRNA
2.
NPJ Vaccines ; 6(1): 153, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916519

RESUMO

Recent approval of mRNA vaccines for emergency use against COVID-19 is likely to promote rapid development of mRNA-based vaccines targeting a wide range of infectious diseases. Compared to conventional approaches, this vaccine modality promises comparable potency while substantially accelerating the pace of development and deployment of vaccine doses. Already demonstrated successfully for single antigen vaccines such as for COVID-19, this technology could be optimized for complex multi-antigen vaccines. Herein, utilizing multiple influenza antigens, we demonstrated the suitability of the mRNA therapeutic (MRT) platform for such applications. Seasonal influenza vaccines have three or four hemagglutinin (HA) antigens of different viral subtypes. In addition, influenza neuraminidase (NA), a tetrameric membrane protein, is identified as an antigen that has been linked to protective immunity against severe viral disease. We detail the efforts in optimizing formulations of influenza candidates that use unmodified mRNA encoding full-length HA or full-length NA encapsulated in lipid nanoparticles (LNPs). HA and NA mRNA-LNP formulations, either as monovalent or as multivalent vaccines, induced strong functional antibody and cellular responses in non-human primates and such antigen-specific antibody responses were associated with protective efficacy against viral challenge in mice.

3.
Mol Immunol ; 109: 88-98, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30909122

RESUMO

Drosophila melanogaster relies on an evolutionarily conserved innate immune system to protect itself from potentially deadly pathogens. One of the earliest pathways activated after injury or infection is the melanization pathway, which is responsible for synthesizing and depositing melanin at the site of injury, or onto invading microbes. Three genes, PPO1-3, encoding prophenoloxidase (PPO), an inactive precursor of phenoloxidase (PO), are responsible for the production of melanin after their activation via immune challenge. One pathogen capable of infecting D. melanogaster are entomopathogenic nematodes. Steinernema carpocapsae nematodes exist in a mutualistic relationship with Xenorhabdus nematophila bacteria and are an important biological control agent for controlling insect pests. The nematode-bacteria complex (symbiotic nematodes) can be separated, creating "axenic" nematodes, devoid of their associated bacteria, which are still capable of infecting and killing D. melanogaster. In order to investigate how the D. melanogaster melanization pathway contributes to the anti-nematode immune response, symbiotic and axenic S. carpocapsae were used to study D. melanogaster survival, PPO gene expression, and activation of PPO to PO. Our research suggests that the expression of all three D. melanogaster PPO genes contributes to survival, however only PPO1 or PPO3 appear to be up-regulated during axenic or symbiotic nematode infection. Additionally, we present data suggesting that a complex regulatory system exists between PPOs, potentially allowing for the compensation of PPOs by one another. Further, we found that axenic nematode infection leads to higher levels of PO, suggesting that X. nematophila suppresses this activation. We also report for the first time the differentiation of lamellocytes, a specialized type of hemocytes in D. melanogaster, in response to symbiotic S. carpocapsae nematode infection. Our results suggest an important role played by the melanization pathway in response to nematode infection, and demonstrate how this response can be manipulated by S. carpocapsae nematodes and their mutualistic X. nematophila bacteria.


Assuntos
Catecol Oxidase/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/imunologia , Drosophila melanogaster/parasitologia , Precursores Enzimáticos/metabolismo , Imunidade , Nematoides/fisiologia , Animais , Catecol Oxidase/genética , Diferenciação Celular , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Precursores Enzimáticos/genética , Regulação da Expressão Gênica , Genes de Insetos , Hemócitos/metabolismo , Larva , Análise de Sobrevida , Simbiose
4.
Trends Parasitol ; 34(5): 430-444, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29150386

RESUMO

Endosymbiotic bacteria exist in many animals where they develop relationships that affect certain physiological processes in the host. Insects and their nematode parasites form great models for understanding the genetic and molecular basis of immune and parasitic processes. Both organisms contain endosymbionts that possess the ability to interfere with certain mechanisms of immune function and pathogenicity. This review summarizes recent information on the involvement of insect endosymbionts in the response to parasitic nematode infections, and the influence of nematode endosymbionts on specific aspects of the insect immune system. Analyzing this information will be particularly useful for devising endosymbiont-based strategies to intervene in insect immunity or nematode parasitism for the efficient management of noxious insects in the field.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Insetos/parasitologia , Nematoides/fisiologia , Simbiose , Animais , Insetos/imunologia
5.
Front Immunol ; 8: 539, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28536580

RESUMO

The immune response of a host to a pathogen is typically described as either innate or adaptive. The innate form of the immune response is conserved across all organisms, including insects. Previous and recent research has focused on the nature of the insect immune system and the results imply that the innate immune response of insects is more robust and specific than previously thought. Priming of the insect innate immune system involves the exposure of insects to dead or a sublethal dose of microbes in order to elicit an initial response. Comparing subsequent infections in primed insects to non-primed individuals indicates that the insect innate immune response may possess some of the qualities of an adaptive immune system. Although some studies demonstrate that the protective effects of priming are due to a "loitering" innate immune response, others have presented more convincing elements of adaptivity. While an immune mechanism capable of producing the same degree of recognition specificity as seen in vertebrates has yet to be discovered in insects, a few interesting cases have been identified and discussed.

6.
Pathogens ; 5(3)2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27649248

RESUMO

More than half of the described species of the phylum Nematoda are considered parasitic, making them one of the most successful groups of parasites. Nematodes are capable of inhabiting a wide variety of niches. A vast array of vertebrate animals, insects, and plants are all identified as potential hosts for nematode parasitization. To invade these hosts successfully, parasitic nematodes must be able to protect themselves from the efficiency and potency of the host immune system. Innate immunity comprises the first wave of the host immune response, and in vertebrate animals it leads to the induction of the adaptive immune response. Nematodes have evolved elegant strategies that allow them to evade, suppress, or modulate host immune responses in order to persist and spread in the host. Nematode immunomodulation involves the secretion of molecules that are capable of suppressing various aspects of the host immune response in order to promote nematode invasion. Immunomodulatory mechanisms can be identified in parasitic nematodes infecting insects, plants, and mammals and vary greatly in the specific tactics by which the parasites modify the host immune response. Nematode-derived immunomodulatory effects have also been shown to affect, negatively or positively, the outcome of some concurrent diseases suffered by the host. Understanding nematode immunomodulatory actions will potentially reveal novel targets that will in turn lead to the development of effective means for the control of destructive nematode parasites.

7.
Immun Ageing ; 13: 15, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27134635

RESUMO

BACKGROUND: Molecular and genetic studies in model organisms have recently revealed a dynamic interplay between immunity and ageing mechanisms. In the fruit fly Drosophila melanogaster, inhibition of the insulin/insulin-like growth factor signaling pathway prolongs lifespan, and mutations in the insulin receptor substrate Chico extend the survival of mutant flies against certain bacterial pathogens. Here we investigated the immune phenotypes, immune signaling activation and immune function of chico mutant adult flies against the virulent insect pathogen Photorhabdus luminescens as well as to non-pathogenic Escherichia coli bacteria. RESULTS: We found that D. melanogaster chico loss-of-function mutant flies were equally able to survive infection by P. luminescens or E. coli compared to their background controls, but they contained fewer numbers of bacterial cells at most time-points after the infection. Analysis of immune signaling pathway activation in flies infected with the pathogenic or the non-pathogenic bacteria showed reduced transcript levels of antimicrobial peptide genes in the chico mutants than in controls. Evaluation of immune function in infected flies revealed increased phenoloxidase activity and melanization response to P. luminescens and E. coli together with reduced phagocytosis of bacteria in the chico mutants. Changes in the antibacterial immune function in the chico mutants was not due to altered metabolic activity. CONCLUSIONS: Our results indicate a novel role for chico in the regulation of the antibacterial immune function in D. melanogaster. Similar studies will further contribute to a better understanding of the interconnection between ageing and immunity and lead to the identification and characterization of the molecular host components that modulate both important biological processes.

8.
Int J Pharm ; 490(1-2): 55-64, 2015 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-25987211

RESUMO

Niacin is a highly effective, lipid regulating drug associated with a number of metabolically induced side effects such as prostaglandin (PG) mediated flushing and hepatic toxicity. In an attempt to reduce the development of these adverse effects, scientists have investigated differing methods of niacin delivery designed to control drug release and alter metabolism. However, despite successful formulation of various orally based capsule and tablet delivery systems, patient adherence to niacin therapy is still compromised by adverse events such as PG-induced flushing. While the primary advantage of orally dosed formulations is ease of use, alternative delivery options such as transdermal delivery or polymeric micro/nanoparticle encapsulation for oral administration have shown promise in niacin reformulation. However, the effectiveness of these alternative delivery options in reducing inimical effects of niacin and maintaining drug efficacy is still largely unknown and requires more in-depth investigation. In this paper, we present an overview of niacin applications, its metabolic pathways, and current drug delivery formulations. Focus is placed on oral immediate, sustained, and extended release niacin delivery as well as combined statin and/or prostaglandin antagonist niacin formulation. We also examine and discuss current findings involving transdermal niacin formulations and polymeric micro/nanoparticle encapsulated niacin delivery.


Assuntos
Niacina/química , Niacina/farmacologia , Administração Cutânea , Química Farmacêutica/métodos , Preparações de Ação Retardada/química , Sistemas de Liberação de Medicamentos/métodos , Desenho de Fármacos , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Nanopartículas/química
9.
PLoS One ; 9(12): e113558, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25502102

RESUMO

Polymer based nanoparticle formulations have been shown to increase drug bioavailability and/or reduce drug adverse effects. Nonsteroidal anti-inflammatory drugs (e.g. celecoxib) reduce prostaglandin synthesis and cause side effects such as gastrointestinal and renal complications. The aim of this study was to formulate celecoxib entrapped poly lactide-co-glycolide based nanoparticles through a solvent evaporation process using didodecyldimethylammonium bromide or poly vinyl alcohol as stabilizer. Nanoparticles were characterized for zeta potential, particle size, entrapment efficiency, and morphology. Effects of stabilizer concentration (0.1, 0.25, 0.5, and 1% w/v), drug amount (5, 10, 15, and 20 mg), and emulsifier (lecithin) on nanoparticle characterization were examined for formula optimization. The use of 0.1, 0.25, and 0.5% w/v didodecyldimethylammonium bromide resulted in a more than 5-fold increase in zeta potential and a more than 1.5-fold increase in entrapment efficiency with a reduction in particle size over 35%, when compared to stabilizer free formulation. Nanoparticle formulations were also highly influenced by emulsifier and drug amount. Using 0.25% w/v didodecyldimethylammonium bromide NP formulations, peak zeta potential was achieved using 15 mg celecoxib with emulsifier (17.15±0.36 mV) and 20 mg celecoxib without emulsifier (25.00±0.18 mV). Peak NP size reduction and entrapment efficiency was achieved using 5 mg celecoxib formulations with (70.87±1.24 nm and 95.55±0.66%, respectively) and without (92.97±0.51 nm and 95.93±0.27%, respectively) emulsifier. In conclusion, formulations using 5 mg celecoxib with 0.25% w/v didodecyldimethylammonium bromide concentrations produced nanoparticles exhibiting enhanced size reduction and entrapment efficiency. Furthermore, emulsifier free formulations demonstrated improved zeta potential when compared to formulations containing emulsifier (p<0.01). Therefore, our results suggest the use of emulsifier free 5 mg celecoxib drug formulations containing 0.25% w/v didodecyldimethylammonium bromide for production of polymeric NPs that demonstrate enhanced zeta potential, small particle size, and high entrapment efficiency.


Assuntos
Anti-Inflamatórios não Esteroides/farmacocinética , Nanopartículas/química , Pirazóis/farmacocinética , Sulfonamidas/farmacocinética , Anti-Inflamatórios não Esteroides/química , Materiais Biocompatíveis/química , Disponibilidade Biológica , Celecoxib , Química Farmacêutica , Ácido Láctico/química , Lecitinas/química , Tamanho da Partícula , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Pirazóis/química , Sulfonamidas/química
10.
Expert Opin Drug Deliv ; 11(10): 1661-80, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25054316

RESUMO

INTRODUCTION: Over the past few decades, nanoparticles (NPs) have gained immeasurable interest in the field of drug delivery. Various NP formulations have been disseminated in drug development in an attempt to increase efficacy, safety and tolerability of incorporated drugs. In this context, NP formulations that increase solubility, control release, and/or affect the in vivo disposition of drugs, were developed to improve the pharmacokinetic and pharmacodynamic properties of encapsulated drugs. AREAS COVERED: In this article, important properties related to NP function such as particle size, surface charge and shape are disseminated. Also, the current understanding of how NP characteristics affect particle uptake and targeted delivery is elucidated. Selected NP systems currently used in delivery of drugs in biological systems and their production methods are discussed as well. Emphasis is placed on current NP formulations that are shown to reduce drug-induced adverse renal complications. EXPERT OPINION: Formulation designs utilizing NP-encapsulated drugs offer alternative pharmacotherapy options with improved safety profiles for current and emerging drugs. NPs have been shown to increase the therapeutic index of several entrapped drugs mostly by decreasing drug localization and side effects on organs. Recent studies on NP-encapsulated chemotherapeutic and antibiotic medications show enhanced therapeutic outcomes by altering drug degradation, increasing systemic circulation and/or enhancing cell specific targeting. They may also reduce the distribution of encapsulated drugs into the kidneys and attenuate drug-associated adverse renal complications. The usefulness of NP formulation in reducing the nephrotoxicity of nonsteroidal anti-inflammatory drugs is an under explored territory that deserves more attention.


Assuntos
Química Farmacêutica , Sistemas de Liberação de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Rim/efeitos dos fármacos , Nanopartículas/química , Animais , Humanos , Tamanho da Partícula , Preparações Farmacêuticas , Solubilidade
11.
PLoS One ; 9(2): e89087, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586517

RESUMO

Nonsteroidal anti-inflammatory drugs (NSAIDs) can produce adverse effects by inhibiting prostaglandin (PG) synthesis. A PGE1 analogue, misoprostol, is often utilized to alleviate NSAID-related gastrointestinal side effects. This study examined the effect of misoprostol on celecoxib renal toxicity. Additionally, the effects of these drugs on cardiovascular parameters were evaluated. Four randomized rat groups were orally gavaged for 9 days, two groups receiving vehicle and two groups receiving misoprostol (100 µg/kg) twice daily. Celecoxib (40 mg/kg) was co-administered once daily to one vehicle and one misoprostol group from days 3 to 9. Urine and blood samples were collected and blood pressure parameters were measured during the study period. Hearts and kidneys were harvested on final day. Day 2 urinary electrolyte samples revealed significant reductions in sodium excretion in misoprostol (0.12 ± 0.05 µmol/min/100 g) and misoprostol+celecoxib groups (0.07 ± 0.02 µmol/min/100 g). At day 3, all treatment groups showed significantly reduced sodium excretion. Potassium excretion diminished significantly in vehicle+celecoxib and misoprostol+celecoxib groups from day 3 onward. Urinary kidney injury molecule-1 levels were significantly increased in vehicle+celecoxib (0.65 ± 0.02 vs. 0.35 ± 0.07 ng/mL, p = 0.0002) and misoprostol+celecoxib (0.61 ± 0.06 vs. 0.37 ± 0.06 ng/mL, p = 0.0015) groups when compared to baseline; while plasma levels of cardiac troponin I increased significantly in vehicle+celecoxib (p = 0.0040) and misoprostol+misoprostol (p = 0.0078) groups when compared to vehicle+vehicle. Blood pressure parameters increased significantly in all misoprostol treated groups. Significant elevation in diastolic (p = 0.0071) and mean blood pressure (p = 0.0153) was noted in misoprostol+celecoxib compared to vehicle+celecoxib. All treatments produced significant tubular dilatation/necrosis compared to control. No significant myocardial changes were noticed; however, three animals presented with pericarditis. Kidney, heart, and plasma celecoxib levels revealed no significant change between vehicle+celecoxib and misoprostol+celecoxib. Concomitant misoprostol administration did not prevent celecoxib renal toxicity, and instead exacerbated renal side effects. Misoprostol did not alter plasma or tissue celecoxib concentrations suggesting no pharmacokinetic interaction between celecoxib and misoprostol.


Assuntos
Nefropatias/induzido quimicamente , Misoprostol/efeitos adversos , Pirazóis/efeitos adversos , Sulfonamidas/efeitos adversos , Administração Oral , Aldosterona/sangue , Análise de Variância , Animais , Pressão Sanguínea/efeitos dos fármacos , Nitrogênio da Ureia Sanguínea , Celecoxib , Eletrólitos/urina , Immunoblotting , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Misoprostol/administração & dosagem , Potássio/urina , Ratos , Sódio/urina , Troponina I/sangue
12.
PLoS One ; 9(1): e87326, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489896

RESUMO

Drug based nanoparticle (NP) formulations have gained considerable attention over the past decade for their use in various drug formulations. NPs have been shown to increase bioavailability, decrease side effects of highly toxic drugs, and prolong drug release. Nonsteroidal anti-inflammatory drugs such as diclofenac block cyclooxygenase expression and reduce prostaglandin synthesis, which can lead to several side effects such as gastrointestinal bleeding and renal insufficiency. The aim of this study was to formulate and characterize diclofenac entrapped poly(lactide-co-glycolide) (PLGA) based nanoparticles. Nanoparticles were formulated using an emulsion-diffusion-evaporation technique with varying concentrations of poly vinyl alcohol (PVA) (0.1, 0.25, 0.5, or 1%) or didodecyldimethylammonium bromide (DMAB) (0.1, 0.25, 0.5, 0.75, or 1%) stabilizers centrifuged at 8,800 rpm or 12,000 rpm. The resultant nanoparticles were evaluated based on particle size, zeta potential, and entrapment efficacy. DMAB formulated NPs showed the lowest particle size (108 ± 2.1 nm) and highest zeta potential (-27.71 ± 0.6 mV) at 0.1 and 0.25% respectively, after centrifugation at 12,000 rpm. Results of the PVA based NP formulation showed the smallest particle size (92.4 ± 7.6 nm) and highest zeta potential (-11.14 ± 0.5 mV) at 0.25% and 1% w/v, respectively, after centrifugation at 12,000 rpm. Drug entrapment reached 77.3 ± 3.5% and 80.2 ± 1.2% efficiency with DMAB and PVA formulations, respectively. The results of our study indicate the use of DMAB for increased nanoparticle stability during formulation. Our study supports the effective utilization of PLGA based nanoparticle formulation for diclofenac.


Assuntos
Anti-Inflamatórios não Esteroides/farmacocinética , Diclofenaco/farmacocinética , Nanopartículas/química , Anti-Inflamatórios não Esteroides/química , Disponibilidade Biológica , Diclofenaco/química , Sistemas de Liberação de Medicamentos , Estabilidade de Medicamentos , Tamanho da Partícula
13.
Eur J Pharm Sci ; 53: 28-34, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24342124

RESUMO

Nonsteroidal anti-inflammatory drugs (NSAIDs) cause gastrointestinal and renal side effects. Rebamipide is a mucoprotective agent that reduces gastrointenstinal side effects when administered concomitantly with NSAIDs. In this study, we investigated the pharmacokinetic drug interactions of rebamipide with two selected NSAIDs, celecoxib or diclofenac. Rats were randomly divided into five groups. Two groups received placebo and three groups were administered rebamipide (30 mg/kg) orally twice daily for two days. On day 3, the animals treated with placebo received celecoxib (40 mg/kg) or diclofenac (10mg/kg) and rats receiving rebamipide were administerd rebamipide followed by a single dose of placebo, celecoxib, or diclofenac. To investigate drug protein interactions, blank rat plasma was spiked with known concentrations of rebamipide, diclofenac plus rebamipide, or celecoxib plus rebamipide then dialyzed through a Rapid Equilibrium Dialysis device. AUC (139.70±24.97 µg h/mL), Cmax (42.99±2.98 µg/mL), and CLoral (0.08±0.02 L/h/kg) values of diclofenac in diclofenac plus rebamipide group altered when compared to those of diclofenac treated groups. Treatment with rebamipide showed no significant change in pharmacokinetic parameters of celecoxib treated rats. Cmax (7.80±1.22 µg/mL), AUC (56.46±7.30 µg h/mL), Vd/F (7.55±1.37 L/kg), and CLoral (0.58±0.09 L/h/kg) of rebamipide were significantly altered when diclofenac was co-administered with rebamipide. Pharmacokinetic parameters of rebamipide plus celecoxib group were not significantly different from those of rebamipide group. Plasma protein binding was not affected by concomitant administration of another drug. These results indicate alteration of pharmacokinetic parameters of both rebamipide and diclofenac when co-administered and cannot be explained by a variation in plasma protein binding.


Assuntos
Alanina/análogos & derivados , Anti-Inflamatórios não Esteroides/farmacocinética , Diclofenaco/farmacocinética , Pirazóis/farmacocinética , Quinolonas/farmacocinética , Sulfonamidas/farmacocinética , Alanina/farmacocinética , Animais , Proteínas Sanguíneas/metabolismo , Celecoxib , Interações Medicamentosas , Masculino , Ligação Proteica , Ratos , Ratos Sprague-Dawley
14.
MethodsX ; 1: 49-55, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26150934

RESUMO

Rebamipide is a mucoprotective agent commonly used to prevent nonsteriodal anti-inflammatory drug-induced gastrointenstinal side effects [1]. Human plasma and urine analysis of rebamipide utilizing high performance liquid chromatography (HPLC) have been reported [2]. Recently, we reported on the plasma levels of rebamipide in presense or absence of celecoxib or diclofenac in rats [3] using a modified HPLC method of detection developed by Jeoung et al. [4]. To tailor the method towards use in urinary rebamipide extraction and analysis, the following modifications were made:•To compensate for high concentrations of rebamipide found in urine, a new rebamipide stock solution was prepared with a final concentration of 50,000 ng/mL.•Rat urine calibration standards were obtained within the range of 50-1000 ng/mL and 1000-50,000 ng/mL.•Plasma samples were replaced with urine samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...