Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 5: 4332, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-25019300

RESUMO

Improved measurement techniques are central to technological development and foundational scientific exploration. Quantum physics relies on detectors sensitive to non-classical features of systems, enabling precise tests of physical laws and quantum-enhanced technologies including precision measurement and secure communications. Accurate detector response calibration for quantum-scale inputs is key to future research and development in these cognate areas. To address this requirement, quantum detector tomography has been recently introduced. However, this technique becomes increasingly challenging as the complexity of the detector response and input space grow in a number of measurement outcomes and required probe states, leading to further demands on experiments and data analysis. Here we present an experimental implementation of a versatile, alternative characterization technique to address many-outcome quantum detectors that limits the input calibration region and does not involve numerical post processing. To demonstrate the applicability of this approach, the calibrated detector is subsequently used to estimate non-classical photon number states.

2.
Opt Express ; 21(5): 5309-17, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23482102

RESUMO

We experimentally demonstrate the generation of multi-photon Fock states with up to three photons in well-defined spatial-temporal modes synchronized with a classical clock. The states are characterized using quantum optical homodyne tomography to ensure mode selectivity. The three-photon Fock states are probabilistically generated by pulsed spontaneous parametric down conversion at a rate of one per second, enabling complete characterization in 12 hours.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...