Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(52): 26540-26548, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31818940

RESUMO

Streptococcus groups A and B cause serious infections, including early onset sepsis and meningitis in newborns. Rib domain-containing surface proteins are found associated with invasive strains and elicit protective immunity in animal models. Yet, despite their apparent importance in infection, the structure of the Rib domain was previously unknown. Structures of single Rib domains of differing length reveal a rare case of domain atrophy through deletion of 2 core antiparallel strands, resulting in the loss of an entire sheet of the ß-sandwich from an immunoglobulin-like fold. Previously, observed variation in the number of Rib domains within these bacterial cell wall-attached proteins has been suggested as a mechanism of immune evasion. Here, the structure of tandem domains, combined with molecular dynamics simulations and small angle X-ray scattering, suggests that variability in Rib domain number would result in differential projection of an N-terminal host-colonization domain from the bacterial surface. The identification of 2 further structures where the typical B-D-E immunoglobulin ß-sheet is replaced with an α-helix further confirms the extensive structural malleability of the Rib domain.

2.
Nat Commun ; 8: 14804, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28429713

RESUMO

Membrane proteins play vital roles in inside-out and outside-in signal transduction by responding to inputs that include mechanical stimuli. Mechanical gating may be mediated by the membrane or by protein(s) but evidence for the latter is scarce. Here we use force spectroscopy, protein engineering and bacterial growth assays to investigate the effects of force on complexes formed between TonB and TonB-dependent transporters (TBDT) from Gram-negative bacteria. We confirm the feasibility of protein-only mediated mechanical gating by demonstrating that the interaction between TonB and BtuB (a TBDT) is sufficiently strong under force to create a channel through the TBDT. In addition, by comparing the dimensions of the force-induced channel in BtuB and a second TBDT (FhuA), we show that the mechanical properties of the interaction are perfectly tuned to their function by inducing formation of a channel whose dimensions are tailored to the ligand.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/fisiologia , Proteínas de Escherichia coli/metabolismo , Ativação do Canal Iônico , Proteínas de Membrana/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Bactérias/metabolismo , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Negativas/metabolismo , Ligação Proteica , Engenharia de Proteínas , Transdução de Sinais , Análise Espectral , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...