Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(3): 1769-1782, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36631996

RESUMO

Iridium nanoparticles are important catalysts for several chemical and energy conversion reactions. Studies of iridium nanoparticles have also been a key for the development of kinetic models of nanomaterial formation. However, compared to other metals such as gold or platinum, knowledge on the nature of prenucleation species and structural insights into the resultant nanoparticles are missing, especially for nanoparticles obtained from IrxCly precursors investigated here. We use in situ X-ray total scattering (TS) experiments with pair distribution function (PDF) analysis to study a simple, surfactant-free synthesis of colloidal iridium nanoparticles. The reaction is performed in methanol at 50 °C with only a base and an iridium salt as precursor. From different precursor salts─IrCl3, IrCl4, H2IrCl6, or Na2IrCl6─colloidal nanoparticles as small as Ir∼55 are obtained as the final product. The nanoparticles do not show the bulk iridium face-centered cubic (fcc) structure but show decahedral and icosahedral structures. The formation route is highly dependent on the precursor salt used. Using IrCl3 or IrCl4, metallic iridium nanoparticles form rapidly from IrxClyn- complexes, whereas using H2IrCl6 or Na2IrCl6, the iridium nanoparticle formation follows a sudden growth after an induction period and the brief appearance of a crystalline phase. With H2IrCl6, the formation of different Irn (n = 55, 55, 85, and 116) nanoparticles depends on the nature of the cation in the base (LiOH, NaOH, KOH, or CsOH, respectively) and larger particles are obtained with larger cations. As the particles grow, the nanoparticle structure changes from partly icosahedral to decahedral. The results show that the synthesis of iridium nanoparticles from IrxCly is a valuable iridium nanoparticle model system, which can provide new compositional and structural insights into iridium nanoparticle formation and growth.

2.
Beilstein J Nanotechnol ; 13: 230-235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281627

RESUMO

A surfactant-free synthesis of precious metal nanoparticles (NPs) performed in alkaline low-boiling-point solvents has been recently reported. Monoalcohols are here investigated as solvents and reducing agents to obtain colloidal Os nanoparticles by using low-temperature (<100 °C) surfactant-free syntheses. The effect of the precursor (OsCl3 or H2OsCl6), precursor concentration (up to 100 mM), solvent (methanol or ethanol), presence or absence of a base (NaOH), and addition of water (0 to 100 vol %) on the resulting nanomaterials is discussed. It is found that no base is required to obtain Os nanoparticles as opposed to the case of Pt or Ir NPs. The robustness of the synthesis for a precursor concentration up to 100 mM allows for the performance of X-ray total scattering with pair distribution function (PDF) analysis, which shows that 1-2 nm hexagonal close packed (hcp) NPs are formed from chain-like [OsO x Cl y ] complexes.

3.
ACS Omega ; 7(5): 4714-4721, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35155963

RESUMO

The development of nanomaterials often relies on wet-chemical synthesis performed in reflux setups using round-bottom flasks. Here, an alternative approach to synthesize nanomaterials is presented that uses glass tubes designed for NMR analysis as reactors. This approach uses less solvent and energy, generates less waste, provides safer conditions, is less prone to contamination, and is compatible with high-throughput screening. The benefits of this approach are illustrated by an in breadth study with the synthesis of gold, iridium, osmium, and copper sulfide nanoparticles.

4.
ACS Nano ; 14(5): 5480-5490, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32343552

RESUMO

Spinel iron oxide nanocrystals (NCs) have been reported to have atomic-level core and surface structural features that differ from those of the bulk material. Recent advances in a continuous growth synthesis of metal oxide NCs make it possible to prepare a series of NCs with subnanometer control of size with diameters below 10 nm that are well-suited for investigating size-dependent structure and reactivity. Here, we study the evolution of size-dependent structure in spinel iron oxide and determine how nanoscale structure influences the growth of NCs. We synthesized spinel iron oxide NCs via a continuous growth method that permits layer-by-layer control of size in order to monitor nanoscale structure over 16 core sizes between 3 and 10 nm. X-ray total scattering data were collected and analyzed with pair distribution function (PDF) analysis in order to refine quantitative structural features including cation occupancies that could be used to detect changes both in the oxidation state and the presence of tetrahedrally coordinated cation vacancies in the NCs. We find that the average iron oxidation state increases as core diameters decrease from 8 down to 3 nm. The trend in iron oxidation state can be explained by the oxidation of surface layers in the NCs. For samples exposed to air for several weeks, oxidation appears to cease when a volume equivalent to that of an ∼1.3 nm shell is converted to the more oxidized maghemite. The number of tetrahedrally coordinated cation vacancies also increases as the NC core size decreases. The correlation between the number of these vacancies and the faster growth for smaller NCs suggests that these reactive vacancies may be responsible for the rapid growth observed for nanocrystals with diameters smaller than 8 nm.

5.
Nanoscale Adv ; 2(6): 2234-2254, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-36133369

RESUMO

The development of new functional materials builds on an understanding of the intricate relationship between material structure and properties, and structural characterization is a crucial part of materials chemistry. However, elucidating the atomic structure of nanomaterials remains a challenge using conventional diffraction techniques due to the lack of long-range atomic order. Over the past decade, Pair Distribution Function (PDF) analysis of X-ray or neutron total scattering data has become a mature and well-established method capable of giving insight into the atomic structure in nanomaterials. Here, we review the use of PDF analysis and modelling in characterization of a range of different nanomaterials that exhibit unique atomic structure compared to the corresponding bulk materials. A brief introduction to PDF analysis and modelling is given, followed by examples of how essential structural information can be extracted from PDFs using both model-free and advanced modelling methods. We put an emphasis on how the intuitive nature of the PDF can be used for understanding important structural motifs, and on the diversity of applications of PDF analysis to nanostructure problems.

6.
Biosecur Bioterror ; 12(1): 8-19, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24552360

RESUMO

Antiviral medications can decrease the severity and duration of influenza, but they are most effective if started within 48 hours of the onset of symptoms. In a severe influenza pandemic, normal channels of obtaining prescriptions and medications could become overwhelmed. To assess public perception of the acceptability and feasibility of alternative strategies for prescribing, distributing, and dispensing antivirals and disseminating information about influenza and its treatment, the Institute of Medicine, with technical assistance from the Centers for Disease Control and Prevention (CDC), convened public engagement events in 3 demographically and geographically diverse communities: Fort Benton, MT; Chattanooga, TN; and Los Angeles, CA. Participants were introduced to the issues associated with pandemic influenza and the challenges of ensuring timely public access to information and medications. They then discussed the advantages and disadvantages of 5 alternative strategies currently being considered by the CDC and its partners. Participants at all 3 venues expressed high levels of acceptance for each of the proposed strategies and contributed useful ideas to support their implementation. This article discusses the key findings from these sessions.


Assuntos
Acesso à Informação , Antivirais/provisão & distribuição , Acessibilidade aos Serviços de Saúde , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Opinião Pública , Adolescente , Adulto , Idoso , Feminino , Humanos , Influenza Humana/epidemiologia , Masculino , Pessoa de Meia-Idade , Pandemias , Estados Unidos/epidemiologia , Adulto Jovem
7.
Nature ; 505(7482): 239-43, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24291791

RESUMO

The increasing demands placed on natural resources for fuel and food production require that we explore the use of efficient, sustainable feedstocks such as brown macroalgae. The full potential of brown macroalgae as feedstocks for commercial-scale fuel ethanol production, however, requires extensive re-engineering of the alginate and mannitol catabolic pathways in the standard industrial microbe Saccharomyces cerevisiae. Here we present the discovery of an alginate monomer (4-deoxy-L-erythro-5-hexoseulose uronate, or DEHU) transporter from the alginolytic eukaryote Asteromyces cruciatus. The genomic integration and overexpression of the gene encoding this transporter, together with the necessary bacterial alginate and deregulated native mannitol catabolism genes, conferred the ability of an S. cerevisiae strain to efficiently metabolize DEHU and mannitol. When this platform was further adapted to grow on mannitol and DEHU under anaerobic conditions, it was capable of ethanol fermentation from mannitol and DEHU, achieving titres of 4.6% (v/v) (36.2 g l(-1)) and yields up to 83% of the maximum theoretical yield from consumed sugars. These results show that all major sugars in brown macroalgae can be used as feedstocks for biofuels and value-added renewable chemicals in a manner that is comparable to traditional arable-land-based feedstocks.


Assuntos
Biocombustíveis/provisão & distribuição , Metabolismo dos Carboidratos , Etanol/metabolismo , Engenharia Genética , Phaeophyceae/metabolismo , Saccharomyces cerevisiae/metabolismo , Alginatos/metabolismo , Anaerobiose , Ascomicetos/genética , Ascomicetos/metabolismo , Biotecnologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Evolução Molecular , Fermentação , Teste de Complementação Genética , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Manitol/metabolismo , Phaeophyceae/genética , Ácido Quínico/metabolismo , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética , Alga Marinha/genética , Alga Marinha/metabolismo , Ácidos Urônicos/metabolismo
8.
Science ; 335(6066): 308-13, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22267807

RESUMO

Prospecting macroalgae (seaweeds) as feedstocks for bioconversion into biofuels and commodity chemical compounds is limited primarily by the availability of tractable microorganisms that can metabolize alginate polysaccharides. Here, we present the discovery of a 36-kilo-base pair DNA fragment from Vibrio splendidus encoding enzymes for alginate transport and metabolism. The genomic integration of this ensemble, together with an engineered system for extracellular alginate depolymerization, generated a microbial platform that can simultaneously degrade, uptake, and metabolize alginate. When further engineered for ethanol synthesis, this platform enables bioethanol production directly from macroalgae via a consolidated process, achieving a titer of 4.7% volume/volume and a yield of 0.281 weight ethanol/weight dry macroalgae (equivalent to ~80% of the maximum theoretical yield from the sugar composition in macroalgae).


Assuntos
Alginatos/metabolismo , Biocombustíveis , Escherichia coli/genética , Etanol/metabolismo , Engenharia Metabólica , Phaeophyceae/metabolismo , Alga Marinha/metabolismo , Vibrio/enzimologia , Alginatos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Biomassa , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Escherichia coli/metabolismo , Fermentação , Genes Bacterianos , Glucose/metabolismo , Ácido Glucurônico/química , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/química , Ácidos Hexurônicos/metabolismo , Ácido Láctico/metabolismo , Manitol/metabolismo , Redes e Vias Metabólicas , Fases de Leitura Aberta , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Vibrio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...