Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(25): 23017-23023, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37396263

RESUMO

Rapid detection of nerve agents from complex matrices with minimal sample preparation is essential due to their high toxicity and bioavailability. In this work, quantum dots (QDs) were functionalized with oligonucleotide aptamers that specifically targeted a nerve agent metabolite, methylphosphonic acid (MePA). These QD-DNA bioconjugates were covalently linked to quencher molecules to form Förster resonance energy transfer (FRET) donor-acceptor pairs that quantitatively measure the presence of MePA. Using the FRET biosensor, the MePA limit of detection was 743 nM in artificial urine. A decrease in the QD lifetime was measured upon DNA binding and was recovered with MePA. The biosensor's flexible design makes it a strong candidate for the rapid detection of chemical and biological agents for deployable, in-field detectors.

2.
ACS Appl Mater Interfaces ; 12(8): 9478-9488, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31999095

RESUMO

In this work, hydrogen isotopes in the form of protium and deuterium were rapidly desorbed from magnetic-hydride iron oxide-palladium (Fe2O3-Pd) hybrid nanomaterials using an alternating magnetic field (AFM). Palladium (Pd), a hydride material with a well-known hydrogen isotope effect, was deposited on an Fe2O3 magnetic nanoparticle support by solution chemistries and used as a hydrogen isotope storage component. The morphological, structural, optical, and magnetic studies reveal that the Fe2O3-Pd nanoparticles are hybrid structures exhibiting both hydrogen isotope storage (Pd) and magnetic (Fe2O3) properties. The hydrogen isotope sorption/desorption behavior of metal hydride-magnetic nanomaterials was assessed by isothermal pressure-composition response curves (isotherms). The amount and rate of hydrogen isotope gas release was tuned by simply adjusting the strength of the magnetic field strength applied. Protium and deuterium displayed similar loading capacities, namely, H/M 0.55 and H/M = 0.45, but different plateau pressures. Significant differences in the kinetics of release for protium and deuterium during magnetic heating were observed. A series of magnetically induced charge-discharge cycling experiments were conducted showing that this is a highly reproducible and robust process.

3.
Rapid Commun Mass Spectrom ; 33(22): 1695-1702, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31267593

RESUMO

RATIONALE: The ability to detect and quantify the presence of specific inorganic elements and complexes is essential for environmental monitoring and nuclear safeguards applications. In this work, paper spray ionization mass spectrometry was used for the rapid chemical and isotopic characterization of trace inorganic species collected on cotton swipe substrates. The direct analysis of cotton swipes using this ambient ionization technique led to fast sample analysis that retained original chemical information of the source material with minimal sample preparation. METHODS: Mass spectra were collected with an atmospheric pressure ionization, high-resolution mass spectrometer for solutions containing uranyl acetate, uranyl chloride, uranyl nitrate, and uranyl tri-n-butylphosphate complexes. Gadolinium nitrate was used as an internal standard for the quantitative analysis of uranium. To demonstrate the ability to characterize inorganic contaminants in the presence of uranium, a multi-element inorganic standard containing U, Bi, Pb, Cd, Fe, and Zn was deposited onto cotton substrates and directly analyzed without purification. RESULTS: All elements doped on the cotton substrate were detected with strong signal-to-noise ratios (ca 1000 for UO2 + on multi-element doped swipes) and high integrated intensities (>105 counts) from collection periods of approximately 1 min. Limits of detection were determined to be approximately 94 ng for UO2 + and uranyl acetate through the measurement of ppb level solutions. CONCLUSIONS: The rapid analysis of uranium and other inorganic-containing samples while still retaining original chemical information (e.g. uranyl complexation) was demonstrated. Qualitative detection and speciation were achieved in less than 1 min of analysis. For uranium isotopic quantitation, longer accumulations (>15 min) can be sustained to improve the accuracy of minor 235 U isotopic abundance measurements to approximately 1% error.

4.
ACS Nano ; 10(2): 1969-77, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26760436

RESUMO

We describe the necessary design criteria to create highly efficient energy transfer conjugates containing luciferase enzymes derived from Photinus pyralis (Ppy) and semiconductor quantum rods (QRs) with rod-in-rod (r/r) microstructure. By fine-tuning the synthetic conditions, CdSe/CdS r/r-QRs were prepared with two different emission colors and three different aspect ratios (l/w) each. These were hybridized with blue, green, and red emitting Ppy, leading to a number of new BRET nanoconjugates. Measurements of the emission BRET ratio (BR) indicate that the resulting energy transfer is highly dependent on QR energy accepting properties, which include absorption, quantum yield, and optical anisotropy, as well as its morphological and topological properties, such as aspect ratio and defect concentration. The highest BR was found using r/r-QRs with lower l/w that were conjugated with red Ppy, which may be activating one of the anisotropic CdSe core energy levels. The role QR surface defects play on Ppy binding, and energy transfer was studied by growth of gold nanoparticles at the defects, which indicated that each QR set has different sites. The Ppy binding at those sites is suggested by the observed BRET red-shift as a function of Ppy-to-QR loading (L), where the lowest L results in highest efficiency and furthest shift.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Luciferases/química , Nanoconjugados/química , Pontos Quânticos/química , Luciferases/metabolismo , Nanoconjugados/ultraestrutura , Pontos Quânticos/ultraestrutura
5.
Langmuir ; 31(27): 7463-71, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26086169

RESUMO

The DNA-mediated self-assembly of multicolor quantum dot (QD) clusters via a stepwise approach is described. The CdSe/ZnS QDs were synthesized and functionalized with an amphiphilic copolymer, followed by ssDNA conjugation. At each functionalization step, the QDs were purified via gradient ultracentrifugation, which was found to remove excess polymer and QD aggregates, allowing for improved conjugation yields and assembly reactivity. The QDs were then assembled and disassembled in a stepwise manner at a ssDNA functionalized magnetic colloid, which provided a convenient way to remove unreacted QDs and ssDNA impurities. After assembly/disassembly, the clusters' optical characteristics were studied by fluorescence spectroscopy and the assembly morphology and stoichiometry was imaged via electron microscopy. The results indicate that a significant amount of QD-to-QD energy transfer occurred in the clusters, which was studied as a function of increasing acceptor-to-donor ratios, resulting in increased QD acceptor emission intensities compared to controls.


Assuntos
Compostos de Cádmio/química , Cor , DNA de Cadeia Simples/química , Pontos Quânticos , Compostos de Selênio/química , Sulfetos/química , Compostos de Zinco/química , Tamanho da Partícula , Polímeros/química , Espectrometria de Fluorescência , Propriedades de Superfície , Tensoativos/química
6.
ACS Nano ; 7(8): 7011-20, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23899347

RESUMO

In this paper we describe the use of a temperature-responsive polymer to regulate DNA interactions in both a DNA-mediated assembly system and a DNA-encoded drug delivery system. A thermoresponsive pNIPAAm-co-pAAm polymer, with a transition temperature (TC) of 51 °C, was synthesized with thiol modification and grafted onto gold nanoparticles (Au NPs) also containing single-stranded oligonucleotides (ssDNA). The thermoresponsive behavior of the polymer regulated the accessibility of the sequence-specific hybridization between complementary DNA-functionalized Au NPs. At T < TC, the polymer was hydrophilic and extended, blocking interaction between the complementary sequences at the periphery of the hydrodynamic diameter. In contrast, at T > TC, the polymer shell undergoes a hydrophilic to -phobic phase transition and collapses, shrinking below the outer ssDNA, allowing for the sequence-specific hybridization to occur. The potential application of this dynamic interface for drug delivery is shown, in which the chemotherapy drug doxorubicin (DOX) is bound to double-stranded DNA (dsDNA)-functionalized Au NPs whose sequences are known to be high-affinity intercalation points for it. The presence of the polymer capping is shown to decrease drug release kinetics and equilibrium at T < TC, but increase release at T > TC, thus improving the cytotoxicity of the encoded nanocarrier design.


Assuntos
DNA/química , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Nanopartículas/química , Polímeros/química , Linhagem Celular Tumoral , DNA de Cadeia Simples/química , Ouro/química , Humanos , Nanopartículas Metálicas/química , Micelas , Hibridização de Ácido Nucleico , Temperatura , Fatores de Tempo , Raios Ultravioleta
7.
J Colloid Interface Sci ; 350(1): 168-77, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20591439

RESUMO

The interactions of a biomolecule glutathione (GSH) with citrate-capped gold nanoparticles (AuNP) have been investigated to evaluate the viability of a rapid GSH-capture by gold nanoparticle carriers, as a model system for applications ranging from designing nanoparticle-enhanced functional biosensor interfaces to nanomedicine. The measurements, performed using resonance elastic light scattering (RELS) spectroscopy, have shown a strong dependence of GSH-induced scattering cross-section on gold nanoparticle size. A large increase in RELS intensity after injection of GSH, in a short reaction time (tau=60 s), has been observed for small AuNP (5nm dia.) and ascribed to the fast ligand-exchange followed by AuNP assembly. The unexpected non-Langmuirian concentration dependence of scattering intensity for AuNP (5 nm) indicates on a 2D nucleation and growth mechanism of the ligand-exchange process. The ligand-exchange and small nanoparticle ensemble formation followed by relaxation have been observed in long term (10 h) monitoring of GSH-AuNP interactions by RELS. The results of molecular dynamics and quantum mechanical calculations corroborate the mechanism of the formation of hydrogen-bonded GSH-linkages and interparticle interactions and show that the assembly is driven by multiple H-bonding between GSH-capped AuNP and electrostatic zwitterionic interactions. The RELS spectroscopy has been found as a very sensitive tool for studying interparticle interactions. The application of RELS can be expanded to monitor reactivities and assembly of other monolayer-protected metal clusters, especially in very fast processes which cannot be followed by other techniques.


Assuntos
Glutationa/química , Ouro/química , Nanopartículas Metálicas/química , Ligação de Hidrogênio , Ligantes , Modelos Biológicos , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...