Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38939966

RESUMO

SCN2A gene-related early-infantile developmental and epileptic encephalopathy (EI-DEE) is a rare and severe disorder that manifests in early infancy. SCN2A mutations affecting the fast inactivation gating mechanism can result in altered voltage dependence and incomplete inactivation of the encoded neuronal Nav1.2 channel and lead to abnormal neuronal excitability. In this study, we evaluated clinical data of seven missense Nav1.2 variants associated with DEE and performed molecular dynamics simulations, patch-clamp electrophysiology, and dynamic clamp real-time neuronal modelling to elucidate the molecular and neuron-scale phenotypic consequences of the mutations. The N1662D mutation almost completely prevented fast inactivation without affecting activation. The comparison of wild-type and N1662D channel structures suggested that the ambifunctional hydrogen bond formation between residues N1662 and Q1494 is essential for fast inactivation. Fast inactivation could also be prevented with engineered Q1494A or Q1494L Nav1.2 channel variants, whereas Q1494E or Q1494 K variants resulted in incomplete inactivation and persistent current. Molecular dynamics simulations revealed a reduced affinity of the hydrophobic IFM-motif to its receptor site with N1662D and Q1494L variants relative to wild-type. These results demonstrate that the interactions between N1662 and Q1494 underpin the stability and the orientation of the inactivation gate and are essential for the development of fast inactivation. Six DEE-associated Nav1.2 variants, with mutations mapped to channel segments known to be implicated in fast inactivation were also evaluated. Remarkably, the L1657P variant also prevented fast inactivation and produced biophysical characteristics that were similar to those of N1662D, whereas the M1501 V, M1501T, F1651C, P1658S, and A1659 V variants resulted in biophysical properties that were consistent with gain-of-function and enhanced action potential firing of hybrid neurons in dynamic action potential clamp experiments. Paradoxically, low densities of N1662D or L1657P currents potentiated action potential firing, whereas increased densities resulted in sustained depolarization. Our results provide novel structural insights into the molecular mechanism of Nav1.2 channel fast inactivation and inform treatment strategies for SCN2A-related EI-DEE. The contribution of non-inactivating Nav1.2 channels to neuronal excitability may constitute a distinct cellular mechanism in the pathogenesis of SCN2A-related DEE.

2.
Epileptic Disord ; 24(5): 928-933, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35811432

RESUMO

Koolen-de Vries syndrome (KdVS) is a genetic condition caused by 17q21.31 microdeletions or pathogenic variants in KANSL1. Affected patients most commonly exhibit some or all of the following: neonatal hypotonia, developmental impairment, facial dysmorphic features, and congenital malformations. Epilepsy occurs in approximately half, often with phenotypes on the epilepsyaphasia spectrum. We describe six children with KdVS found to have continuous spike-wave in sleep (CSWS) on EEG, four of whom were diagnosed with epileptic encephalopathy with CSWS and two with Landau-Kleffner syndrome. When compared with other children with CSWS on EEG, patients with KdVS may present at slightly later ages and with a longer interval between seizure diagnosis and identification of CSWS. There is no clear best treatment for children with CSWS, but two patients in our cohort were trialed on a variation of the ketogenic diet, and both reported clinical improvement. In one of the patients, the response was dramatic, and CSWS recurred when weaning of the ketogenic diet was attempted. Based on our findings, an EEG capturing a prolonged period of sleep should be arranged in any child with KdVS presenting with developmental regression or plateau, particularly if they have a preceding history of seizures.


Assuntos
Deficiência Intelectual , Síndrome de Landau-Kleffner , Anormalidades Múltiplas , Deleção Cromossômica , Cromossomos Humanos Par 17 , Eletroencefalografia , Humanos , Deficiência Intelectual/genética , Síndrome de Landau-Kleffner/diagnóstico , Convulsões , Sono/fisiologia
3.
Brain ; 145(4): 1299-1309, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34633442

RESUMO

A potential link between GABRD encoding the δ subunit of extrasynaptic GABAA receptors and neurodevelopmental disorders has largely been disregarded due to conflicting conclusions from early studies. However, we identified seven heterozygous missense GABRD variants in 10 patients with neurodevelopmental disorders and generalized epilepsy. One variant occurred in two sibs of healthy parents with presumed somatic mosaicism, another segregated with the disease in three affected family members, and the remaining five occurred de novo in sporadic patients. Electrophysiological measurements were used to determine the functional consequence of the seven missense δ subunit variants in receptor combinations of α1ß3δ and α4ß2δ GABAA receptors. This was accompanied by analysis of electroclinical phenotypes of the affected individuals. We determined that five of the seven variants caused altered function of the resulting α1ß3δ and α4ß2δ GABAA receptors. Surprisingly, four of the five variants led to gain-of-function effects, whereas one led to a loss-of-function effect. The stark differences between the gain-of-function and loss-of function effects were mirrored by the clinical phenotypes. Six patients with gain-of-function variants shared common phenotypes: neurodevelopmental disorders with behavioural issues, various degrees of intellectual disability, generalized epilepsy with atypical absences and generalized myoclonic and/or bilateral tonic-clonic seizures. The EEG showed qualitative analogies among the different gain-of-function variant carriers consisting of focal slowing in the occipital regions often preceding irregular generalized epileptiform discharges, with frontal predominance. In contrast, the one patient carrying a loss-of-function variant had normal intelligence and no seizure history, but has a diagnosis of autism spectrum disorder and suffers from elevated internalizing psychiatric symptoms. We hypothesize that increase in tonic GABA-evoked current levels mediated by δ-containing extrasynaptic GABAA receptors lead to abnormal neurotransmission, which represent a novel mechanism for severe neurodevelopmental disorders. In support of this, the electroclinical findings for the gain-of-function GABRD variants resemble the phenotypic spectrum reported in patients with missense SLC6A1 (GABA uptake transporter) variants. This also indicates that the phenomenon of extrasynaptic receptor overactivity is observed in a broader range of patients with neurodevelopmental disorders, because SLC6A1 loss-of-function variants also lead to overactive extrasynaptic δ-containing GABAA receptors. These findings have implications when selecting potential treatment options, as a substantial portion of available antiseizure medication act by enhancing GABAergic function either directly or indirectly, which could exacerbate symptoms in patients with gain-of-function GABRD variants.


Assuntos
Transtorno do Espectro Autista , Epilepsia Generalizada , Epilepsia , Proteínas da Membrana Plasmática de Transporte de GABA , Transtornos do Neurodesenvolvimento , Transtorno do Espectro Autista/genética , Epilepsia/genética , Epilepsia Generalizada/genética , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Mutação com Ganho de Função , Humanos , Transtornos do Neurodesenvolvimento/genética , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Convulsões/genética , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...