Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6064, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025851

RESUMO

The retina, an anatomical extension of the brain, forms physiological connections with the visual cortex of the brain. Although retinal structures offer a unique opportunity to assess brain disorders, their relationship to brain structure and function is not well understood. In this study, we conducted a systematic cross-organ genetic architecture analysis of eye-brain connections using retinal and brain imaging endophenotypes. We identified novel phenotypic and genetic links between retinal imaging biomarkers and brain structure and function measures from multimodal magnetic resonance imaging (MRI), with many associations involving the primary visual cortex and visual pathways. Retinal imaging biomarkers shared genetic influences with brain diseases and complex traits in 65 genomic regions, with 18 showing genetic overlap with brain MRI traits. Mendelian randomization suggests bidirectional genetic causal links between retinal structures and neurological and neuropsychiatric disorders, such as Alzheimer's disease. Overall, our findings reveal the genetic basis for eye-brain connections, suggesting that retinal images can help uncover genetic risk factors for brain disorders and disease-related changes in intracranial structure and function.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Retina , Humanos , Imageamento por Ressonância Magnética/métodos , Retina/diagnóstico por imagem , Masculino , Encéfalo/diagnóstico por imagem , Feminino , Córtex Visual/diagnóstico por imagem , Imagem Multimodal/métodos , Adulto , Vias Visuais/diagnóstico por imagem , Pessoa de Meia-Idade , Análise da Randomização Mendeliana , Endofenótipos , Idoso
2.
bioRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38559152

RESUMO

As large-scale biobanks provide increasing access to deep phenotyping and genomic data, genome-wide association studies (GWAS) are rapidly uncovering the genetic architecture behind various complex traits and diseases. GWAS publications typically make their summary-level data (GWAS summary statistics) publicly available, enabling further exploration of genetic overlaps between phenotypes gathered from different studies and cohorts. However, systematically analyzing high-dimensional GWAS summary statistics for thousands of phenotypes can be both logistically challenging and computationally demanding. In this paper, we introduce BIGA (https://bigagwas.org/), a website that aims to offer unified data analysis pipelines and processed data resources for cross-trait genetic architecture analyses using GWAS summary statistics. We have developed a framework to implement statistical genetics tools on a cloud computing platform, combined with extensive curated GWAS data resources. Through BIGA, users can upload data, submit jobs, and share results, providing the research community with a convenient tool for consolidating GWAS data and generating new insights.

3.
medRxiv ; 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36824893

RESUMO

As an anatomical extension of the brain, the retina of the eye is synaptically connected to the visual cortex, establishing physiological connections between the eye and the brain. Despite the unique opportunity retinal structures offer for assessing brain disorders, less is known about their relationship to brain structure and function. Here we present a systematic cross-organ genetic architecture analysis of eye-brain connections using retina and brain imaging endophenotypes. Novel phenotypic and genetic links were identified between retinal imaging biomarkers and brain structure and function measures derived from multimodal magnetic resonance imaging (MRI), many of which were involved in the visual pathways, including the primary visual cortex. In 65 genomic regions, retinal imaging biomarkers shared genetic influences with brain diseases and complex traits, 18 showing more genetic overlaps with brain MRI traits. Mendelian randomization suggests that retinal structures have bidirectional genetic causal links with neurological and neuropsychiatric disorders, such as Alzheimer's disease. Overall, cross-organ imaging genetics reveals a genetic basis for eye-brain connections, suggesting that the retinal images can elucidate genetic risk factors for brain disorders and disease-related changes in intracranial structure and function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...