Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Direct ; 4(5): e00223, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32399510

RESUMO

Unoccupied aerial systems (UAS) were used to phenotype growth trajectories of inbred maize populations under field conditions. Three recombinant inbred line populations were surveyed on a weekly basis collecting RGB images across two irrigation regimens (irrigated and non-irrigated/rain fed). Plant height, estimated by the 95th percentile (P95) height from UAS generated 3D point clouds, exceeded 70% correlation (r) to manual ground truth measurements and 51% of experimental variance was explained by genetics. The Weibull sigmoidal function accurately modeled plant growth (R 2: >99%; RMSE: <4 cm) from P95 genetic means. The mean asymptote was strongly correlated (r 2 = 0.66-0.77) with terminal plant height. Maximum absolute growth rates (mm/day) were weakly correlated with height and flowering time. The average inflection point ranged from 57 to 60 days after sowing (DAS) and was correlated with flowering time (r 2 = 0.45-0.68). Functional growth parameters (asymptote, inflection point, growth rate) alone identified 34 genetic loci, each explaining 3-15% of total genetic variation. Plant height was estimated at one-day intervals to 85 DAS, identifying 58 unique temporal quantitative trait loci (QTL) locations. Genomic hotspots on chromosomes 1 and 3 indicated chromosomal regions associated with functional growth trajectories influencing flowering time, growth rate, and terminal growth. Temporal QTL demonstrated unique dynamic expression patterns not previously observable, and no QTL were significantly expressed throughout the entire growing season. UAS technologies improved phenotypic selection accuracy and permitted monitoring traits on a temporal scale previously infeasible using manual measurements, furthering understanding of crop development and biological trajectories.

2.
Sensors (Basel) ; 18(12)2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30469545

RESUMO

Continuing population growth will result in increasing global demand for food and fiber for the foreseeable future. During the growing season, variability in the height of crops provides important information on plant health, growth, and response to environmental effects. This paper indicates the feasibility of using structure from motion (SfM) on images collected from 120 m above ground level (AGL) with a fixed-wing unmanned aerial vehicle (UAV) to estimate sorghum plant height with reasonable accuracy on a relatively large farm field. Correlations between UAV-based estimates and ground truth were strong on all dates (R² > 0.80) but are clearly better on some dates than others. Furthermore, a new method for improving UAV-based plant height estimates with multi-level ground control points (GCPs) was found to lower the root mean square error (RMSE) by about 20%. These results indicate that GCP-based height calibration has a potential for future application where accuracy is particularly important. Lastly, the image blur appeared to have a significant impact on the accuracy of plant height estimation. A strong correlation (R² = 0.85) was observed between image quality and plant height RMSE and the influence of wind was a challenge in obtaining high-quality plant height data. A strong relationship (R² = 0.99) existed between wind speed and image blurriness.

3.
PLoS One ; 11(7): e0159781, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27472222

RESUMO

Advances in automation and data science have led agriculturists to seek real-time, high-quality, high-volume crop data to accelerate crop improvement through breeding and to optimize agronomic practices. Breeders have recently gained massive data-collection capability in genome sequencing of plants. Faster phenotypic trait data collection and analysis relative to genetic data leads to faster and better selections in crop improvement. Furthermore, faster and higher-resolution crop data collection leads to greater capability for scientists and growers to improve precision-agriculture practices on increasingly larger farms; e.g., site-specific application of water and nutrients. Unmanned aerial vehicles (UAVs) have recently gained traction as agricultural data collection systems. Using UAVs for agricultural remote sensing is an innovative technology that differs from traditional remote sensing in more ways than strictly higher-resolution images; it provides many new and unique possibilities, as well as new and unique challenges. Herein we report on processes and lessons learned from year 1-the summer 2015 and winter 2016 growing seasons-of a large multidisciplinary project evaluating UAV images across a range of breeding and agronomic research trials on a large research farm. Included are team and project planning, UAV and sensor selection and integration, and data collection and analysis workflow. The study involved many crops and both breeding plots and agronomic fields. The project's goal was to develop methods for UAVs to collect high-quality, high-volume crop data with fast turnaround time to field scientists. The project included five teams: Administration, Flight Operations, Sensors, Data Management, and Field Research. Four case studies involving multiple crops in breeding and agronomic applications add practical descriptive detail. Lessons learned include critical information on sensors, air vehicles, and configuration parameters for both. As the first and most comprehensive project of its kind to date, these lessons are particularly salient to researchers embarking on agricultural research with UAVs.


Assuntos
Agricultura , Ensaios de Triagem em Larga Escala , Fenótipo , Tecnologia de Sensoriamento Remoto/métodos , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...