Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 140(4): 2333, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27794335

RESUMO

Beaked and sperm whales are top predators living in the waters off the Kona coast of Hawai'i. Temporal and spatial analyses of the foraging activity of these two species were studied with passive acoustics techniques. Three passive acoustics recorders moored to the ocean floor were used to monitor the foraging activity of these whales in three locations along the Kona coast of the island of Hawaii. Data were analyzed using automatic detector/classification systems: M3R (Marine Mammal Monitoring on Navy Ranges), and custom-designed Matlab programs. The temporal variation in foraging activity was species-specific: beaked whales foraged more at night in the north, and more during the day-time off Kailua-Kona. No day-time/night-time preference was found in the southern end of the sampling range. Sperm whales foraged mainly at night in the north, but no day-time/night-time preference was observed off Kailua-Kona and in the south. A Generalized Linear Model was then applied to assess whether location and chlorophyll concentration affected the foraging activity of each species. Chlorophyll concentration and location influenced the foraging activity of both these species of deep-diving odontocetes.

2.
J Acoust Soc Am ; 139(3): 1381-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27036275

RESUMO

The biosonar signals of two free-swimming Atlantic bottlenose dolphins performing a complex sonar search for a bottom target in San Diego Bay were compared with the biosonar signals of a dolphin performing a target discrimination task in a net pen in the same bay. A bite-plate device carried by the free-swimming dolphins supported a hydrophone that extended directly in front of the dolphin. A biosonar measuring tool attached to the bite plate measured the outgoing biosonar signals while the dolphins conducted sonar searches. Each of the free-swimming dolphins used different biosonar search strategy in solving the problem and the dolphins' biosonar signals reflect the difference in strategy. The dolphin in the pen stationed in a hoop while echolocating on a target 6 m away and reported if the indentation on a spherical target was directed toward it. The signals were parameterized by determining the peak-to-peak source levels, source energy flux density, peak frequency, center frequency, root-mean-square (rms) bandwidth, rms duration, and the Q of the signals. Some parameters were similar for the free-swimming and stationary dolphins while some were significantly different, suggesting biosonar signals used by free-swimming animals may be different than signals used by dolphins in a pen.


Assuntos
Golfinho Nariz-de-Garrafa/fisiologia , Golfinho Nariz-de-Garrafa/psicologia , Ecolocação , Natação , Vocalização Animal , Acústica/instrumentação , Animais , Discriminação Psicológica , Masculino , Processamento de Sinais Assistido por Computador , Espectrografia do Som , Transdutores
3.
PLoS One ; 10(11): e0142628, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26605917

RESUMO

Satellite tagging data for short-finned pilot whales (Globicephala macrorhynchus) and Blainville's beaked whales (Mesoplodon densirostris) were used to identify core insular foraging regions off the Kona (west) Coast of Hawai'i Island. Ship-based active acoustic surveys and oceanographic model output were used in generalized additive models (GAMs) and mixed models to characterize the oceanography of these regions and to examine relationships between whale density and the environment. The regions of highest density for pilot whales and Blainville's beaked whales were located between the 1000 and 2500 m isobaths and the 250 and 2000 m isobaths, respectively. Both species were associated with slope waters, but given the topography of the area, the horizontal distribution of beaked whales was narrower and located in shallower waters than that of pilot whales. The key oceanographic parameters characterizing the foraging regions were bathymetry, temperature at depth, and a high density of midwater micronekton scattering at 70 kHz in 400-650 m depths that likely represent the island-associated deep mesopelagic boundary community and serve as prey for the prey of the whales. Thus, our results suggest that off the Kona Coast, and potentially around other main Hawaiian Islands, the deep mesopelagic boundary community is key to a food web that supports insular cetacean populations.


Assuntos
Migração Animal/fisiologia , Comportamento Predatório/fisiologia , Baleias Piloto/fisiologia , Baleias/fisiologia , Acústica , Animais , Mergulho , Ecolocação , Cadeia Alimentar , Havaí , Ilhas , Oceanografia , Densidade Demográfica , Imagens de Satélites , Fatores de Tempo , Vocalização Animal/fisiologia
4.
J Acoust Soc Am ; 135(1): 521-30, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24437792

RESUMO

Ecological acoustic recorders (EARs) were moored off the bottom in relatively deep depths (609-710 m) at five locations around the island of Kauai. Initially, the EARs had an analog-to-digital sample rate of 64 kHz with 30-s recordings every 5 min. After the second deployment the sampling rate was increased to 80 kHz in order to better record beaked whale biosonar signals. The results of the 80 kHz recording are discussed in this manuscript and are the results of three deployments over a year's period (January 2010 to January 2011). Five categories of the biosonar signal detection of deep diving odontocetes were created, short-finned pilot whales, sperm whales, beaked whales, Risso's dolphins, and unknown dolphins. During any given day, at least one species of these deep diving odontocetes were detected. On many days, several species were detected. The biosonar signals of short-finned pilot whales were detected the most often with approximately 30% of all the signals, followed by beaked and sperm whales approximately 22% and 21% of all clicks, respectively. The seasonal patterns were not very strong except in the SW location with distinct peak in detection during the months of April-June 2010 period.


Assuntos
Acústica/instrumentação , Mergulho , Golfinhos/psicologia , Monitoramento Ambiental/instrumentação , Comportamento Alimentar , Estações do Ano , Transdutores , Vocalização Animal , Baleias/psicologia , Animais , Golfinhos/classificação , Golfinhos/fisiologia , Desenho de Equipamento , Havaí , Humanos , Oceanos e Mares , Densidade Demográfica , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Espectrografia do Som , Especificidade da Espécie , Fatores de Tempo , Baleias/classificação , Baleias/fisiologia
5.
J Acoust Soc Am ; 133(5): 3119-27, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23654414

RESUMO

Remote autonomous ecological acoustic recorders (EARs) were deployed in deep waters at five locations around the island of Kauai and one in waters off Ni'ihau in the main Hawaiian island chain. The EARs were moored to the bottom at depths between 400 and 800 m. The data acquisition sampling rate was 80 kHz and acoustic signals were recorded for 30 s every 5 min to conserve battery power and disk space. The acoustic data were analyzed with the M3R (Marine Mammal Monitoring on Navy Ranges) software, an energy-ratio-mapping algorithm developed at Oregon State University and custom MATLAB programs. A variety of deep diving odontocetes, including pilot whales, Risso's dolphins, sperm whales, spinner and pan-tropical spotted dolphins, and beaked whales were detected at all sites. Foraging activity typically began to increase after dusk, peaked in the middle of the night and began to decrease toward dawn. Between 70% and 84% of biosonar clicks were detected at night. At present it is not clear why some of the known deep diving species, such as sperm whales and beaked whales, concentrate their foraging efforts at night.


Assuntos
Acústica/instrumentação , Cetáceos/fisiologia , Ritmo Circadiano , Mergulho , Ecolocação , Monitoramento Ambiental/instrumentação , Comportamento Alimentar , Transdutores , Vocalização Animal , Algoritmos , Animais , Desenho de Equipamento , Havaí , Oceanos e Mares , Processamento de Sinais Assistido por Computador , Espectrografia do Som , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...