Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 269: 120768, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34952444

RESUMO

This paper describes the synthesis, structural study, and evaluation of electrochemical and photophysical properties by UV-Vis absorption and fluorescence emission analysis (solution and solid-state) of a series of eight 3,5-aryl-substituted 1-phenyl-2-pyrazolines (5), where 3-aryl = 2-OH-C6H4 (5a-g) or Ph (5h), and 5-aryl = Ph (a, h), 1-naphthyl (b), 4-Br-C6H4 (c), 4-F-C6H4 (d), 4-OCH3-C6H4(e), 4-NO2-C6H4 (f), 4-(N(CH3)2)-C6H4(g). The UV-Vis absorption properties of 2-pyrazolines were evaluated in DCM, MeCN, AcOEt, EtOH, and DMSO as the solvent and showed a fluorescence shift for the polar aprotic solvents. The steady-state fluorescence emission exhibited a band in the blue region when excited at the least energetic transition of each compound, although the excited-state intramolecular proton (ESIPT) effect was not detected. In the solid state, compounds presented similar behavior regarding absorption and emission properties compared to the solution assays. With the electrochemical analyses performed for the synthesized 2-pyrazolines, it was possible to conclude that the redox potentials were influenced by the electronic and steric effects of the substituents on the aryl rings and, according to the electronic nature of the substituents, which electron-donating groups were favored. Finally, the TD-DFT analyses revealed that all compounds had delocalized electron density throughout the 2-pyrazolines unit and were not influenced by the substituent bonded at C-5. Nonetheless, LUMO orbital analysis showed that only derivatives 5b and 5f have this localized density over the substituents.


Assuntos
Elétrons , Prótons , Corantes , Solventes , Espectrometria de Fluorescência
2.
ACS Omega ; 4(6): 9697-9709, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31460060

RESUMO

A systematic investigation to assess the degree of similarity between polymorphs was carried out. A similarity indices (IX) approach was applied in ten series of polymorphs with different characteristics and number of molecules in the asymmetric unit. Geometric (ID), contact area (IC), and stabilization energy (IG) parameters were used. It was possible to situate each comparison in different regions of similarity within the polymorphism phenomenon and determine the boundaries between quasi-isostructural polymorphs and polymorphs of low similarity. The multiparameter IDCG index was used as a robust tool to determine the total similarity within the polymorphism phenomenon. The highest contribution of the stabilization energy parameter (45%) toward the final value of similarity (IDCG) was observed, followed by the contact area index (32%). The geometric index contributed approximately 23% to the final value of IDCG. This information reinforces the importance of the contact area and stabilization energy in assessing the degree of similarity between crystalline structures. A new descriptor (IQ) based on the comparison of the energetic contribution of intermolecular interaction types present in each crystal structure is presented. IQ can be a versatile tool and applicable even for systems that do not share any similarity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...