Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 11(17): 11762-11773, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34522339

RESUMO

Animals continuously interact with their environment through behavioral decisions, rendering the appropriate choice of movement speed and directionality an important phenotypic trait. Anthropogenic activities may alter animal behavior, including movement. A detailed understanding of movement decisions is therefore of great relevance for science and conservation alike. The study of movement decisions in relation to environmental and seasonal cues requires continuous observation of movement behavior, recently made possible by high-resolution telemetry. We studied movement traits of 13 capercaillie (Tetrao urogallus), a mainly ground-moving forest bird species of conservation interest, over two summer seasons in a Swedish windfarm using high-resolution GPS tracking data (5-min sampling interval). We filtered and removed unreliable movement steps using accelerometer data and step characteristics. We explored variation in movement speed and directionality in relation to environmental and seasonal covariates using generalized additive mixed models (GAMMs). We found evidence for clear daily and seasonal variation in speed and directionality of movement that reflected behavioral adjustments to biological and environmental seasonality. Capercaillie moved slower when more turbines were visible and faster close to turbine access roads. Movement speed and directionality were highest on open bogs, lowest on recent clear-cuts (<5 y.o.), and intermediate in all types of forest. Our results provide novel insights into the seasonal and environmental correlates of capercaillie movement patterns and supplement previous behavioral observations on lekking behavior and wind turbine avoidance with a more mechanistic understanding.

2.
Ecol Evol ; 11(13): 8487-8494, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34257911

RESUMO

Wind energy facilities (WEFs) are a relatively novel impact on wildlife habitats, and an increasing number of studies show negative effects on wildlife. Increased stress-associated hormone levels are an indicator of disturbance effects, and measuring fecal glucocorticoid metabolite (FCM) levels is an established noninvasive method to study disturbance effects on wildlife. We studied whether FCM levels of capercaillie (Tetrao urogallus), a locally threatened forest bird species with proven behavioral responses to WEF, are affected by WEF. Using a before-after-control-impact (BACI) study design at sites in Austria, Germany and Sweden we investigated whether mean FCM levels changed after the construction of WEF and whether there was spatial variation in FCM levels in relation to WEF impacts. By analyzing 553 fecal samples from five wind farms and five control sites, we did not find evidence of increased FCM levels due to WEF when comparing wind farm sites before and after WEF construction with control sites. We further could not detect any spatial variation in FCM levels at wind farms related to turbine effects. There was, however, temporal variation in FCM, with lower FCM levels toward the end of the winter season. Differences among individual study sites emphasize the importance of larger studies with a BACI study design. Facing some methodological limitations, we currently find no evidence for an increase in FCM levels in capercaillie due to WEF.

3.
PLoS One ; 12(5): e0175134, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28467429

RESUMO

The rapid spread and diversification of outdoor recreation can impact on wildlife in various ways, often leading to the avoidance of disturbed habitats. To mitigate human-wildlife conflicts, spatial zonation schemes can be implemented to separate human activities from key wildlife habitats, e.g., by designating undisturbed wildlife refuges or areas with some level of restriction to human recreation and land use. However, mitigation practice rarely considers temporal differences in human-wildlife interactions. We used GPS telemetry data from 15 red deer to study the seasonal (winter vs. summer) and diurnal (day vs. night) variation in recreation effects on habitat use in a study region in south-western Germany where a spatial zonation scheme has been established. Our study aimed to determine if recreation infrastructure and spatial zonation affected red deer habitat use and whether these effects varied daily or seasonally. Recreation infrastructure did not affect home range selection in the study area, but strongly determined habitat use within the home range. The spatial zonation scheme was reflected in both of these two levels of habitat selection, with refuges and core areas being more frequently used than the border zones. Habitat use differed significantly between day and night in both seasons. Both summer and winter recreation trails, and nearby foraging habitats, were avoided during day, whereas a positive association was found during night. We conclude that human recreation has an effect on red deer habitat use, and when designing mitigation measures daily and seasonal variation in human-wildlife interactions should be taken into account. We advocate using spatial zonation in conjunction with temporal restrictions (i.e., banning nocturnal recreation activities) and the creation of suitable foraging habitats away from recreation trails.


Assuntos
Cervos/fisiologia , Ecossistema , Recreação , Animais , Humanos
4.
PLoS One ; 9(5): e97718, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24823495

RESUMO

Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species' occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species' occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying single vegetation factors, but full compensation would only be achieved if several factors were changed in concert. The results illustrate the possibilities and limitations of adaptive species conservation management under climate change.


Assuntos
Adaptação Biológica/fisiologia , Distribuição Animal , Biodiversidade , Aves/fisiologia , Mudança Climática , Ecossistema , Florestas , Animais , Conservação dos Recursos Naturais/métodos , Alemanha , Modelos Logísticos , Modelos Biológicos , Especificidade da Espécie , Suíça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...