Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(20): 32152-32161, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859024

RESUMO

Terahertz time-domain spectroscopy (THz-TDS) at room temperature and standard atmosphere pressure remains so far the backbone of THz photonics in numerous applications for civil and defense levels. Plasmonic microstructures and metasurfaces are particularly promising for improving THz spectroscopy techniques and developing biomedical and environmental sensors. Highly doped semiconductors are suitable for replacing the traditional plasmonic noble metals in the THz range. We present a perfect absorber structure based on semiconductor III-Sb epitaxial layers. The insulator layer is GaSb while the metal-like layers are Si doped InAsSb (∼ 5·1019 cm-3). The doping is optically measured in the IR with polaritonic effects at the Brewster angle mode. Theoretically, the surface can be engineered in frequency selective absorption array areas of an extensive THz region from 1.0 to 6.0 THz. The technological process is based on a single resist layer used as hard mask in dry etching defined by electron beam lithography. A wide 1350 GHz cumulative bandwidth experimental absorption is measured in THz-TDS between 1.0 and 2.5 THz, only limited by the air-exposed reflectance configuration. These results pave the way to implement finely tuned selective surfaces based on semiconductors to enhance light-matter interaction in the THz region.

2.
Opt Express ; 30(21): 37971-37979, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258389

RESUMO

We apply reverse engineering techniques (RET) to analyze the dehydration process of a sunflower leaf with terahertz time-domain spectroscopy. The multilayer structure of the leaf is extracted with accuracy during the entire process. Time variations of thickness and the complex index are emphasized for all leaf layers (2 cuticules, 2 epiderms, and 2 mesophylls). The global thickness of the sunflower leaf is reduced by up to 40% of its initial value.


Assuntos
Helianthus , Espectroscopia Terahertz , Desidratação , Folhas de Planta
3.
Sci Adv ; 8(7): eabl5855, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35171677

RESUMO

Both classical and quantum electrodynamics predict the existence of dipole-dipole long-range electrodynamic intermolecular forces; however, these have never been hitherto experimentally observed. The discovery of completely new and unanticipated forces acting between biomolecules could have considerable impact on our understanding of the dynamics and functioning of the molecular machines at work in living organisms. Here, using two independent experiments, on the basis of different physical effects detected by fluorescence correlation spectroscopy and terahertz spectroscopy, respectively, we demonstrate experimentally the activation of resonant electrodynamic intermolecular forces. This is an unprecedented experimental proof of principle of a physical phenomenon that, having been observed for biomacromolecules and with long-range action (up to 1000 Å), could be of importance for biology. In addition to thermal fluctuations that drive molecular motion randomly, these resonant (and thus selective) electrodynamic forces may contribute to molecular encounters in the crowded cellular space.

4.
Nano Lett ; 21(20): 8587-8594, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34618458

RESUMO

Low-dimensional nanosystems are promising candidates for manipulating, controlling, and capturing photons with large sensitivities and low noise. If quantum engineered to tailor the energy of the localized electrons across the desired frequency range, they can allow devising of efficient quantum sensors across any frequency domain. Here, we exploit the rich few-electron physics to develop millimeter-wave nanodetectors employing as a sensing element an InAs/InAs0.3P0.7 quantum-dot nanowire, embedded in a single-electron transistor. Once irradiated with light, the deeply localized quantum element exhibits an extra electromotive force driven by the photothermoelectric effect, which is exploited to efficiently sense radiation at 0.6 THz with a noise equivalent power <8 pWHz-1/2 and almost zero dark current. The achieved results open intriguing perspectives for quantum key distributions, quantum communications, and quantum cryptography at terahertz frequencies.

5.
Opt Express ; 28(23): 35018-35037, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182957

RESUMO

We analyze the multilayer structure of sunflower leaves from Terahertz data measured in the time-domain at a ps scale. Thin film reverse engineering techniques are applied to the Fourier amplitude of the reflected and transmitted signals in the frequency range f < 1.5 Terahertz (THz). Validation is first performed with success on etalon samples. The optimal structure of the leaf is found to be a 8-layer stack, in good agreement with microscopy investigations. Results may open the door to a complementary classification of leaves.


Assuntos
Helianthus/anatomia & histologia , Folhas de Planta/anatomia & histologia , Imagem Terahertz/instrumentação , Espectroscopia Terahertz/métodos , Análise de Fourier
6.
Nano Lett ; 17(11): 7015-7020, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29016145

RESUMO

A graphene ballistic rectifier is used in conjunction with an antenna to demonstrate a rectenna as a terahertz (THz) detector. A small-area (<1 µm2) local gate is used to adjust the Fermi level in the device to optimize the output while minimizing the impact on the cutoff frequency. The device operates in both n- and p-type transport regimes and shows a peak extrinsic responsivity of 764 V/W and a corresponding noise equivalent power of 34 pW Hz-1/2 at room temperature with no indications of a cutoff frequency up to 0.45 THz. The device also demonstrates a linear response for more than 3 orders of magnitude of input power due to its zero threshold voltage, quadratic current-voltage characteristics and high saturation current. Finally, the device is used to take an image of an optically opaque object at 0.685 THz, demonstrating potential in both medical and security imaging applications.

7.
Opt Express ; 24(18): 20119-31, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27607620

RESUMO

We present the concept, the fabrication processes and the experimental results for materials and optics that can be used for terahertz field-effect transistor detector focal plane arrays. More specifically, we propose 3D printed arrays of a new type - diffractive multi-zone lenses of which the performance is superior to that of previously used mono-zone diffractive or refractive elements and evaluate them with GaN/AlGaN field-effect transistor terahertz detectors. Experiments performed in the 300-GHz atmospheric window show that the lens arrays offer both a good efficiency and good uniformity, and may improve the signal-to-noise ratio of the terahertz field-effect transistor detectors by more than one order of magnitude. In practice, we tested 3 × 12 lens linear arrays with printed circuit board THz detector arrays used in postal security scanners and observed significant signal-to-noise improvements. Our results clearly show that the proposed technology provides a way to produce cost-effective, reproducible, flat optics for large-size field-effect transistor THz-detector focal plane arrays.

8.
Adv Mater ; 28(34): 7390-6, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27315585

RESUMO

By reassembling thin isolated atomic planes of hexagonal borum nitride (hBN) with a few layer phosphorene black phosphorus (BP), hBN/BP/hBN heterostructures are mechanically stacked to devise high-efficiency THz photodetectors operating in the 0.3-0.65 THz range, from 4 K to 300 K, with a record signal-to-noise ratio of 20 000.

9.
Sci Rep ; 6: 20474, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26847823

RESUMO

The ability to convert light into an electrical signal with high efficiencies and controllable dynamics, is a major need in photonics and optoelectronics. In the Terahertz (THz) frequency range, with its exceptional application possibilities in high data rate wireless communications, security, night-vision, biomedical or video-imaging and gas sensing, detection technologies providing efficiency and sensitivity performances that can be "engineered" from scratch, remain elusive. Here, by exploiting the inherent electrical and thermal in-plane anisotropy of a flexible thin flake of black-phosphorus (BP), we devise plasma-wave, thermoelectric and bolometric nano-detectors with a selective, switchable and controllable operating mechanism. All devices operates at room-temperature and are integrated on-chip with planar nanoantennas, which provide remarkable efficiencies through light-harvesting in the strongly sub-wavelength device channel. The achieved selective detection (∼5-8 V/W responsivity) and sensitivity performances (signal-to-noise ratio of 500), are here exploited to demonstrate the first concrete application of a phosphorus-based active THz device, for pharmaceutical and quality control imaging of macroscopic samples, in real-time and in a realistic setting.


Assuntos
Nanomedicina/instrumentação , Imagem Terahertz/instrumentação , Desenho de Equipamento , Óptica e Fotônica , Fósforo , Razão Sinal-Ruído , Radiação Terahertz , Transistores Eletrônicos
10.
Opt Express ; 24(1): 272-81, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26832258

RESUMO

Phenomena of the radiation coupling to the field effect transistors based terahertz (THz) detectors are studied. We show that in the case of planar metal antennas a significant portion of incoming radiation, instead of being coupled to the transistors, is coupled to an antenna substrate leading to responsivity losses and/or cross-talk effects in the field effect based THz detector arrays. Experimental and theoretical investigations of the responsivity versus substrate thickness are performed. They clearly show how to minimize the losses by the detector/ array substrate thinning. In conclusion simple quantitative rules of losses minimization by choosing a proper substrate thickness of field effect transistor THz detectors are presented for common materials (Si, GaAs, InP, GaN) used in semiconductor technologies.

11.
Nano Lett ; 16(1): 80-7, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26678677

RESUMO

Topological insulators (TIs) represent a novel quantum state of matter, characterized by edge or surface-states, showing up on the topological character of the bulk wave functions. Allowing electrons to move along their surface, but not through their inside, they emerged as an intriguing material platform for the exploration of exotic physical phenomena, somehow resembling the graphene Dirac-cone physics, as well as for exciting applications in optoelectronics, spintronics, nanoscience, low-power electronics, and quantum computing. Investigation of topological surface states (TSS) is conventionally hindered by the fact that in most of experimental conditions the TSS properties are mixed up with those of bulk-states. Here, we activate, probe, and exploit the collective electronic excitation of TSS in the Dirac cone. By engineering Bi2Te(3-x)Sex stoichiometry, and by gating the surface of nanoscale field-effect-transistors, exploiting thin flakes of Bi2Te2.2Se0.8 or Bi2Se3, we provide the first demonstration of room-temperature terahertz (THz) detection mediated by overdamped plasma-wave oscillations on the "activated" TSS of a Bi2Te2.2Se0.8 flake. The reported detection performances allow a realistic exploitation of TSS for large-area, fast imaging, promising superb impacts on THz photonics.

12.
Adv Mater ; 27(37): 5567-72, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26270791

RESUMO

The first room-temperature terahertz (THz)-frequency nanodetector exploiting a 10 nm thick flake of exfoliated crystalline black phosphorus as an active channel of a field-effect transistor, is devised. By engineering and embedding planar THz antennas for efficient light harvesting, the first technological demonstration of a phosphorus-based active THz device is described.

13.
Opt Express ; 22(8): 8996-9003, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24787788

RESUMO

We report on the development of an innovative class of nanowire-based Terahertz (THz) detectors in which the metamaterial properties of an antenna have been imported in the detection scheme of an overdamped plasma-wave field-effect transistor making its response resonant to THz radiation. Responsivities of ~105 V/W at 0.3 THz, with noise equivalent power levels ≈ 10(-10) W/√Hz, detectivities ~2 · 10(8) cm√Hz/W and quantum efficiencies ~1.2 · 10(-5) are reached at room-temperature. The resonant nature of the detection scheme provided by the four-leaf-clover-shaped geometry and the possibility to extend this technology to large multi-pixel arrays opens the path to demanding applications for ultra-sensitive metrology, spectroscopy and biomedicine.

14.
Nano Lett ; 12(1): 96-101, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22149118

RESUMO

The growth of semiconductor nanowires (NWs) has recently opened new paths to silicon integration of device families such as light-emitting diodes, high-efficiency photovoltaics, or high-responsivity photodetectors. It is also offering a wealth of new approaches for the development of a future generation of nanoelectronic devices. Here we demonstrate that semiconductor nanowires can also be used as building blocks for the realization of high-sensitivity terahertz detectors based on a 1D field-effect transistor configuration. In order to take advantage of the low effective mass and high mobilities achievable in III-V compounds, we have used InAs nanowires, grown by vapor-phase epitaxy, and properly doped with selenium to control the charge density and to optimize source-drain and contact resistance. The detection mechanism exploits the nonlinearity of the transfer characteristics: the terahertz radiation field is fed at the gate-source electrodes with wide band antennas, and the rectified signal is then read at the output in the form of a DC drain voltage. Significant responsivity values (>1 V/W) at 0.3 THz have been obtained with noise equivalent powers (NEP) < 2 × 10(-9) W/(Hz)(1/2) at room temperature. The large existing margins for technology improvements, the scalability to higher frequencies, and the possibility of realizing multipixel arrays, make these devices highly competitive as a future solution for terahertz detection.


Assuntos
Nanoestruturas/química , Nanotecnologia/instrumentação , Radiometria/instrumentação , Radiação Terahertz , Transistores Eletrônicos , Desenho de Equipamento , Análise de Falha de Equipamento , Nanoestruturas/ultraestrutura , Doses de Radiação , Temperatura
15.
Opt Express ; 19(8): 7827-32, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21503093

RESUMO

This paper investigates terahertz detectors fabricated in a low-cost 130 nm silicon CMOS technology. We show that the detectors consisting of a nMOS field effect transistor as rectifying element and an integrated bow-tie coupling antenna achieve a record responsivity above 5 kV/W and a noise equivalent power below 10 pW/Hz(0.5) in the important atmospheric window around 300 GHz and at room temperature. We demonstrate furthermore that the same detectors are efficient for imaging in a very wide frequency range from ~0.27 THz up to 1.05 THz. These results pave the way towards high sensitivity focal plane arrays in silicon for terahertz imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...