Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 138(19): 4291-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21865322

RESUMO

Despite years of study, the precise mechanisms that control position-specific gene expression during development are not understood. Here, we analyze an enhancer element from the even skipped (eve) gene, which activates and positions two stripes of expression (stripes 3 and 7) in blastoderm stage Drosophila embryos. Previous genetic studies showed that the JAK-STAT pathway is required for full activation of the enhancer, whereas the gap genes hunchback (hb) and knirps (kni) are required for placement of the boundaries of both stripes. We show that the maternal zinc-finger protein Zelda (Zld) is absolutely required for activation, and present evidence that Zld binds to multiple non-canonical sites. We also use a combination of in vitro binding experiments and bioinformatics analysis to redefine the Kni-binding motif, and mutational analysis and in vivo tests to show that Kni and Hb are dedicated repressors that function by direct DNA binding. These experiments significantly extend our understanding of how the eve enhancer integrates positive and negative transcriptional activities to generate sharp boundaries in the early embryo.


Assuntos
Proteínas de Drosophila/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Animais , Sequência de Bases , Cruzamentos Genéticos , Análise Mutacional de DNA , Proteínas de Ligação a DNA/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Genes Reporter , Proteínas de Homeodomínio/fisiologia , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Nucleares , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Transgenes , Técnicas do Sistema de Duplo-Híbrido
2.
PLoS One ; 4(2): e4485, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19214234

RESUMO

Drosophila sensory organ precursor cells (SOPs) divide asymmetrically along the anterior-posterior (a-p) body axis to generate two different daughter cells. Planar Cell Polarity (PCP) regulates the a-p orientation of the SOP division. The localization of the PCP proteins Van Gogh (Vang) and Frizzled (Fz) define anterior and posterior apical membrane domains prior to SOP division. Here, we investigate the relative contributions of Vang, Fz and Dishevelled (Dsh), a membrane-associated protein acting downstream of Fz, in orienting SOP polarity. Genetic and live imaging analyses suggest that Dsh restricts the localization of a centrosome-attracting activity to the anterior cortex and that Vang is a target of Dsh in this process. Using a clone border assay, we provide evidence that the Vang and fz genes act redundantly in SOPs to orient its polarity axis in response to extrinsic local PCP cues. Additionally, we find that the activity of Vang is dispensable for the non-autonomous polarizing activity of fz. These observations indicate that both Vang and Fz act as cues for downstream effectors orienting the planar polarity axis of dividing SOPs.


Assuntos
Padronização Corporal/fisiologia , Divisão Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Receptores Frizzled/metabolismo , Proteínas de Membrana/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Anáfase/fisiologia , Animais , Proteínas de Ciclo Celular , Polaridade Celular , Centrossomo/metabolismo , Proteínas Desgrenhadas , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/fisiologia , Receptores Frizzled/genética , Inibidores de Dissociação do Nucleotídeo Guanina/genética , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Proteínas de Membrana/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Interferência de RNA , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/citologia
3.
Dev Biol ; 276(2): 541-51, 2004 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15581884

RESUMO

The Drosophila body plan is composed of a linear array of cephalic, thoracic, and abdominal segments along the anterior posterior axis. The number and positions of individual segments are established by a transcriptional network comprised of maternal effect, gap, pair-rule, and segment polarity genes. The sloppy-paired (slp) locus contains two genes (slp1 and slp2) that are expressed in overlapping striped patterns in the presumptive thorax and abdomen. Previous studies suggest that these genes function at the pair-rule and segment polarity levels to establish the spacing and polarity of thoracic and abdominal segments. One of these genes (slp1) is also expressed in a broad anterior domain that appears before the striped patterns. There are severe cephalic defects in slp1 mutants, including the complete loss of the mandibular segment, but the molecular roles played by Slp1 in anterior patterning are not clear. Here, we present evidence that the anterior Slp1 domain acts as a gradient to differentially repress the anteriormost stripes of several different pair-rule genes. This repressive gradient contributes to the precise spatial arrangement of anterior pair-rule stripe borders required for expression of the first engrailed stripe and the formation of the mandibular segment. These results suggest that Slp1 functions as a gap gene-like repressor, in addition to its roles at the pair-rule and segment polarity levels of the hierarchy. The Slp1 protein contains a protein motif (EH1) which mediates binding to the transcriptional corepressor Groucho (Gro). We show that this domain is required for Slp1-mediated repression in vivo.


Assuntos
Padronização Corporal , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Feminino , Masculino , Morfogênese , Proteínas Repressoras/genética , Fatores de Transcrição/genética
4.
Development ; 131(10): 2419-29, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15128671

RESUMO

The Drosophila Knirps protein is a short-range transcriptional repressor that locally inhibits activators by recruiting the CtBP co-repressor. Knirps also possesses CtBP-independent repression activity. The functional importance of multiple repression activities is not well understood, but the finding that Knirps does not repress some cis-regulatory elements in the absence of CtBP suggested that the co-factor may supply a unique function essential to repress certain types of activators. We assayed CtBP-dependent and -independent repression domains of Knirps in Drosophila embryos, and found that the CtBP-independent activity, when provided at higher than normal levels, can repress an eve regulatory element that normally requires CtBP. Dose response analysis revealed that the activity of Knirps containing both CtBP-dependent and -independent repression activities is higher than that of the CtBP-independent domain alone. The requirement for CtBP at certain enhancers appears to reflect the need for overall higher levels of repression, rather than a requirement for an activity unique to CtBP. Thus, CtBP contributes quantitatively, rather than qualitatively, to overall repression function. The finding that both repression activities are simultaneously deployed suggests that the multiple repression activities do not function as cryptic 'backup' systems, but that each contributes quantitatively to total repressor output.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Fosfoproteínas/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/fisiologia , Oxirredutases do Álcool , Animais , Sequência de Bases , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica/genética , Dados de Sequência Molecular , Fosfoproteínas/genética , Proteínas Repressoras/genética , Mapeamento por Restrição
5.
Nature ; 426(6968): 849-53, 2003 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-14685241

RESUMO

Gradients of regulatory factors are essential for establishing precise patterns of gene expression during development; however, it is not clear how patterning information in multiple gradients is integrated to generate complex body plans. Here we show that opposing gradients of two Drosophila transcriptional repressors, Hunchback (Hb) and Knirps (Kni), position several segments by differentially repressing two distinct regulatory regions (enhancers) of the pair-rule gene even-skipped (eve). Computational and in vivo analyses suggest that enhancer sensitivity to repression is controlled by the number and affinity of repressor-binding sites. Because the kni expression domain is positioned between two gradients of Hb, each enhancer directs expression of a pair of symmetrical stripes, one on each side of the kni domain. Thus, only two enhancers are required for the precise positioning of eight stripe borders (four stripes), or more than half of the whole eve pattern. Our results show that complex developmental expression patterns can be generated by simple repressor gradients. They also support the utility of computational analyses for defining and deciphering regulatory information contained in genomic DNA.


Assuntos
Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Repressoras/metabolismo , Animais , Padronização Corporal , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Elementos de Resposta/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Development ; 129(7): 1669-80, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11923203

RESUMO

The Drosophila morphogenetic protein Bicoid (Bcd) is a homeodomain-containing activator that stimulates the expression of target genes during early embryonic development. We demonstrate that a small domain of Bcd located immediately N-terminally of the homeodomain represses its own activity in Drosophila cells. This domain, referred to as a self-inhibitory domain, works as an independent module that does not rely on any other sequences of Bcd and can repress the activity of heterologous activators. We further show that this domain of Bcd does not affect its properties of DNA binding or subcellular distribution. A Bcd derivative with point mutations in the self-inhibitory domain severely affects pattern formation and target gene expression in Drosophila embryos. We also provide evidence to suggest that the action of the self-inhibitory domain requires a Drosophila co-factor(s), other than CtBP or dSAP18. Our results suggest that proper action of Bcd as a transcriptional activator and molecular morphogen during embryonic development is dependent on the downregulation of its own activity through an interaction with a novel co-repressor(s) or complex(es).


Assuntos
Proteínas de Transporte , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Drosophila/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Transativadores/genética , Transativadores/metabolismo , Oxirredutases do Álcool , Animais , Padronização Corporal/genética , Linhagem Celular , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/química , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/química , Fosfoproteínas/metabolismo , Mutação Puntual , Estrutura Terciária de Proteína , Frações Subcelulares/metabolismo , Transativadores/antagonistas & inibidores , Transativadores/química , Fatores de Transcrição/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...