Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35888500

RESUMO

The paper aimed at enhancing the antimicrobial activity of chitosan by using tea tree essential oil with the purpose of durably finishing cotton fabrics for use in a hospital environment. The influence of crosslinkers and catalysts on the possibility of obtaining stable bonds using hydrothermal in situ synthesis between cellulosic material and chitosan with and without tea tree essential oil was investigated in detail. The morphology of the sample surface before and after the treatment and textile care cycle was investigated using a field emission scanning electron microscopy (FE-SEM) and indicated the presence of chitosan and a thin film on all treated samples, which showed durability of the treatment. The FTIR spectra obtained by Fourier transform infrared spectroscopy (FTIR) using attenuated total reflection measurement technique (ATR) analysis, showed that all the samples tested recorded physicochemical changes in the structure. The analysis of the samples on the goniometer proved the hydrophilicity of the materials, with a film forming on the surface of the treated samples, which is extremely beneficial given the end use of dressing samples to promote wound healing. The presence of a significant amount of bound chitosan with tea tree oil was confirmed by measuring the mass per unit area of the samples after the treatment and textile care cycles. The results of antimicrobial efficacy show that the materials treated with chitosan were resistant to bacteria and fungi in most cases, but only the samples treated in Bath I showed a zone of inhibition against the fungus Candida albicans, indicating the positive effect of tea tree essential oil.

2.
Molecules ; 27(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35209206

RESUMO

The paper examines the influence of cotton cationization on the print quality in terms of penetration, colour yield and colour depth, which have been analysed in comparison to cotton untreated and pretreated with conventional acrylate binder. The process of cationization during mercerization was performed with a cationizing agent Rewin DWR (CHT Bezema). Standard (non-cationized) and cationized fabric, with and without additional layering of binder have been printed by digital inkjet pigment printing method. Moisture management testing (MMT) and dynamic contact angle measurement (drop shape analyzer-DSA30S) were performed on standard and cationized fabric, with and without binder, both with and without pigment layer. After printing, the objective values of colour depth (K/S) and colour parameters L*, C* and h° were analysed. The samples were also analysed by the method of microscopic imaging using a DinoLite microscope. Printed samples were tested to washing fastness, and the results are presented in terms of total colour difference (dECMC), according to CMC(l:c) equation, after the 1st, 3rd, 5th, 7th and 10th washing cycles. Results showed that the cotton cationization will improve the uniformity and coverage of the printed area as well as increase the K/S value. For the samples with binder, the positive effect of cationization on the stability and bond strength between the polymer layer as a pigment carrier with the cotton fabric was confirmed.

3.
Materials (Basel) ; 15(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35208070

RESUMO

High crystallinity leads to low hydrophilicity of fabric made of (poly(ethylene terephthalate)) fibers (PET) causing problems in finishing, washing, and dyeing processes. To improve these properties, the surface of PET fibers is usually modified by hydrolysis. Alkaline hydrolysis is a conventional process usually performed at a temperature higher than 100 °C for more than 1 h. However, the use of strong alkali and high processing temperatures (>100 °C) can lead to fabric damage and a negative impact on the environment. Therefore, in this paper, the possibility of hydrolysis of the PET fibers in the fabric in a sustainable, energy-efficient process was researched. The influence of low temperature (60-100 °C) and an accelerator (a cationic surfactant HDTMAC) to PET alkaline hydrolysis was studied through weight loss, the loss in breaking force, and fiber morphology. The kinetics of PET dissolution in 1.5 mol cm-3 NaOH at low temperature with and without the addition of HDTMAC was determined and the activation energy was calculated according to the theoretical model. It has been confirmed that PET hydrolysis can be carried out in 1.5 mol cm-3 NaOH with the addition of HDTMAC as an accelerator at 80 °C for 10 min. This process is more economically and energetically acceptable than the conventional process, and is therefore more sustainable.

4.
Molecules ; 27(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35164364

RESUMO

Natural dyes are not harmful to the environment owing to their biodegradability. For dye application to textiles, salts are necessary as mordant or electrolytes and make an environmental impact. In this paper, the influence of cationization during mercerization to the dyeing of cotton fabric with natural dye from Dactylopius coccus was researched. For this purpose, bleached cotton fabric as well as fabric cationized with Rewin OS was pre-mordanted using iron(II) sulfate heptahydrate (FeSO4·7H2O) and dyed with natural cochineal dye with and without electrolyte addition. For the characterization of surface changes after cationization, an electrokinetic analysis on SurPASS was performed and compared to pre-mordanting. For determination of dye exhaustion, the analysis of dye solution was performed on a UV/VIS spectrophotometer Cary 50 Solascreen. Spectrophotometric analysis was performed using a Datacolor 850 spectrophotometer, measuring remission "until tolerance" and the whiteness degree, color parameters, color depth (K/S), and colorfastness of dyed fabric were calculated. Levelness was determined by visual assessment. Cationized cotton fabrics showed better absorption and colorfastness. Pre-mordanting and cationization showed synergism. The electrolytes improved the process of dye absorption. However, when natural dyeing was performed on cotton fabric cationized during mercerization, similar chromacity, uniform color, and colorfastness were achieved with and without electrolyte, resulting in pure purple hue of cochineal. For achieving a violet hue, pre-mordanting with Fe-salt was needed. Therefore, salt can be reduced or even unnecessary, which makes this process of natural dyeing more environmentally friendly.

5.
Materials (Basel) ; 15(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35057186

RESUMO

The purpose of the research was to measure the increase in the binding of inclusion complexes ß-cyclodextrin-peppermint oil (ß-CD_PM) to cellulose in cotton and cotton/polyester material with BTCA as the crosslinking agent by applying an ultrasonic bath at room temperature and a frequency of 80 kHz for 10 min. After sonication, the samples were left in a bath for 24 h after which they were dried, thermocondensed and subjected to a number of wash cycles. The treated samples were analysed with Attenuated total reflection (ATR) units heated up to 300 °C (Golden Gate (FTIR-ATR)) to monitor chemical changes indicative of crosslinking, while physico-chemical changes in the samples were monitored by using Fourier transform infrared spectroscopy (FTIR-ATR). Mechanical properties were measured according to EN ISO 13934-1:1999, and coloristic changes were evaluated by the whiteness degree according to CIE (WCIE) and the yellowing index (YI), while antimicrobial activity was determined according to AATCC TM 147-2016. The results show a physico-chemical modification of the UZV-treated cellulosic material. Moreover, partial antimicrobial efficacy on Gram-negative bacteria was confirmed for treated fabrics.

6.
Materials (Basel) ; 14(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34640128

RESUMO

This article deals with cationization of cotton during mercerization and its effects on trichromatic vat dyeing. If cationization is carried out during the after-treatment, regardless of cotton pretreatment, the reaction takes place on the surface and blocks cellulose groups, subsequently resulting in uneven coloration. However, when cationization is carried out with an epihalohydrin during the mercerization process, new cellulose is formed in which the cationic compound is uniformly distributed and trapped between cellulose chains, resulting in uniform coloration after the dyeing process. The reaction time for the process during mercerization is 24 h, thus a more favorable process was researched. Based on electrokinetic analysis, it was found that 5 h was sufficient for the reaction with 3-chloro-2-hydroxypropyltrimethyl ammonium chloride (CHPTAC). The cationization of cotton contributed to the processes of vat dyeing. The change in charge upon cationization resulted in very high adsorption of vat-dye anions, indicating that ionic bonding occurred in addition to van der Waals forces. The color depth improved by more than 10 times. It should be emphasized that the colors with higher chroma and targeted color hue, especially in trichromatic dyeing, were obtained on cationized cotton, in contrast to standard cotton fabrics. The color differences obtained under the different light sources indicate the occurrence of metamerism. Considering the color fastness to laundering, vat-dyed cationized fabrics of all colors may be used in hospitals or other environments where high hygiene and oxidative bleaching are required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...