Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Photonics ; 9(12): 813-816, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27057206

RESUMO

In nature, macroscopic excitation waves1,2 are found in a diverse range of settings including chemical reactions, metal rust, yeast, amoeba and the heart and brain. In the case of living biological tissue, the spatiotemporal patterns formed by these excitation waves are different in healthy and diseased states2,3. Current electrical and pharmacological methods for wave modulation lack the spatiotemporal precision needed to control these patterns. Optical methods have the potential to overcome these limitations, but to date have only been demonstrated in simple systems, such as the Belousov-Zhabotinsky chemical reaction4. Here, we combine dye-free optical imaging with optogenetic actuation to achieve dynamic control of cardiac excitation waves. Illumination with patterned light is demonstrated to optically control the direction, speed and spiral chirality of such waves in cardiac tissue. This all-optical approach offers a new experimental platform for the study and control of pattern formation in complex biological excitable systems.

2.
Circ Res ; 113(7): 863-70, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23899961

RESUMO

RATIONALE: Sarcomere length (SL) is a key indicator of cardiac mechanical function, but current imaging technologies are limited in their ability to unambiguously measure and characterize SL at the cell level in intact, living tissue. OBJECTIVE: We developed a method for measuring SL and regional cell orientation using remote focusing microscopy, an emerging imaging modality that can capture light from arbitrary oblique planes within a sample. METHODS AND RESULTS: We present a protocol that unambiguously and quickly determines cell orientation from user-selected areas in a field of view by imaging 2 oblique planes that share a common major axis with the cell. We demonstrate the effectiveness of the technique in establishing single-cell SL in Langendorff-perfused hearts loaded with the membrane dye di-4-ANEPPS. CONCLUSIONS: Remote focusing microscopy can measure cell orientation in complex 2-photon data sets without capturing full z stacks. The technique allows rapid assessment of SL in healthy and diseased heart experimental preparations.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/métodos , Reperfusão Miocárdica/métodos , Sarcômeros/ultraestrutura , Animais , Feminino , Ratos , Ratos Sprague-Dawley , Ratos Wistar
4.
Biophys J ; 103(5): 907-17, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23009840

RESUMO

Numerous dyes are available or under development for probing the structural and functional properties of biological membranes. Exogenous chromophores adopt a range of orientations when bound to membranes, which have a drastic effect on their biophysical behavior. Here, we present a method that employs optical anisotropy data from three polarization-imaging techniques to establish the distribution of orientations adopted by molecules in monolayers and bilayers. The resulting probability density functions, which contain the preferred molecular tilt µ and distribution breadth γ, are more informative than an average tilt angle [φ]. We describe a methodology for the extraction of anisotropy data through an image-processing technology that decreases the error in polarization measurements by about a factor of four. We use this technique to compare di-4-ANEPPS and di-8-ANEPPS, both dipolar dyes, using data from polarized 1-photon, 2-photon fluorescence and second-harmonic generation imaging. We find that di-8-ANEPPS has a lower tilt but the same distributional width. We find the distribution of tilts taken by di-4-ANEPPS in two phospholipid membrane models: giant unilamellar vesicles and water-in-oil droplet monolayers. Both models result in similar distribution functions with average tilts of 52° and 47°, respectively.


Assuntos
Membrana Celular/metabolismo , Corantes/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Compostos de Piridínio/metabolismo , Processamento de Imagem Assistida por Computador , Óleos/química , Lipossomas Unilamelares/metabolismo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...