Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 14(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-37972272

RESUMO

Accurate taxonomic classification of samples from infected host material is essential for disease diagnostics and genome analyses. Despite the importance, diagnosis of fungal pathogens causing banana leaf diseases remains challenging. Foliar diseases of bananas are mainly caused by 3 Pseudocercospora species, of which the most predominant causal agent is Pseudocercospora fijiensis. Here, we sequenced and assembled four fungal isolates obtained from necrotic banana leaves in Bohol (Philippines) and obtained a high-quality genome assembly for one of these isolates. The samples were initially identified as P. fijiensis using PCR diagnostics; however, the assembly size was consistently 30 Mb smaller than expected. Based on the internal transcribed spacer (ITS) sequences, we identified the samples as Zasmidium syzygii (98.7% identity). The high-quality Zasmidium syzygii assembly is 42.5 Mb in size, comprising 16 contigs, of which 11 are most likely complete chromosomes. The genome contains 98.6% of the expected single-copy BUSCO genes and contains 14,789 genes and 10.3% repeats. The 3 short-read assemblies are less continuous but have similar genome sizes (40.4-42.4 Mb) and contain between 96.5 and 98.4% BUSCO genes. All 4 isolates have identical ITS sequences and are distinct from Zasmidium isolates that were previously sampled from banana leaves. We thus report the first continuous genome assembly of a member of the Zasmidium genus, forming an essential resource for further analysis to enhance our understanding of the diversity of pathogenic fungal isolates as well as fungal diversity.


Assuntos
Ascomicetos , Musa , Musa/genética , Sequência de Bases , Cromossomos , Folhas de Planta/genética
2.
Plant Dis ; 106(3): 966-974, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34546777

RESUMO

Fusarium wilt of banana (FWB), caused by a suite of Fusarium fungi, is among the most devastating plant diseases. The iconic FWB epidemic in the previous century lasted decades and was caused by so-called Race 1 strains that wiped out the dominant 'Gros Michel' banana plantations across Central America. Eventually, it was stopped because the Race 1-resistant 'Cavendish' banana variety replaced 'Gros Michel', which dominates global production (>50%) and trade (>95%). However, presently, the so-called Tropical Race 4 (TR4) threatens plantations of 'Cavendish' and many other banana varieties around the globe. Prevention is the first line of defense against the spread of TR4. Therefore, many disinfection units are installed to prevent the entry of TR4 in banana plantations. These foot and tire baths are filled with disinfectants, but limited knowledge is available on their efficacy. In this project, we evaluated 13 disinfectants commonly used in the Philippines. Our results show that the efficacy of these products depends on the type of fungal spores, the exposure time, and the replenishment frequency of the disinfection units. The resting spores of TR4 were resistant to all but one - unfortunately corrosive - disinfectant. Furthermore, we show that the actual contact time with disinfectants was far below the thresholds determined in laboratory experiments. Finally, muddy disinfection units reduced the efficacy of disinfectants. Taken together, we conclude that practices are inadequate to prevent the dissemination of TR4.


Assuntos
Desinfetantes , Fusarium , Musa , Desinfetantes/farmacologia , Musa/microbiologia , Filipinas , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...