Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(9): e0291347, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37721935

RESUMO

Researchers are obligated to ensure food quality and provide laboratory animals with a palatable diet. Factors influencing the quality and palatability of very high-fat diet (VHFD), a widely used rodent diet, however, are understudied. We conducted experiments to establish best practices for ensuring the quality of VHFD and to improve mouse welfare. We found that VHFD in the food hopper was vulnerable first to dehydration and then oxidation within 7-days, leading to dramatic changes in food intake and food preference behavior in mice. Mitigating dehydration and oxidation of VHFD by replacing food daily, rather than weekly, stabilized feeding behavior without effect on overall cardio-metabolic health. Importantly, daily replacement of VHFD also reduced measures of anxiety-like behavior in the open field test. Refining husbandry practices to include daily replacement of VHFD can therefore ensure VHFD quality and improve animal welfare. Standardizing the practice of daily VHFD replacement may also prevent experimental confound and improve experimental reproducibility and replicability.


Assuntos
Desidratação , Dieta Hiperlipídica , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Reprodutibilidade dos Testes , Qualidade dos Alimentos , Ingestão de Alimentos
2.
Curr Biol ; 30(12): 2379-2385.e4, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32413301

RESUMO

The ability to rapidly arouse from sleep is important for survival. However, increased arousals in patients with sleep apnea and other disorders prevent restful sleep and contribute to cognitive, metabolic, and physiologic dysfunction [1, 2]. Little is currently known about which neural systems mediate these brief arousals, hindering the development of treatments that restore normal sleep. The basal forebrain (BF) receives inputs from many nuclei of the ascending arousal system, including the brainstem parabrachial neurons, which promote arousal in response to elevated blood carbon dioxide levels, as seen in sleep apnea [3]. Optical inhibition of the terminals of parabrachial neurons in the BF impairs cortical arousals to hypercarbia [4], but which BF cell types mediate cortical arousals in response to hypercarbia or other sensory stimuli is unknown. Here, we tested the role of BF parvalbumin (PV) neurons in arousal using optogenetic techniques in mice. Optical stimulation of BF-PV neurons produced rapid transitions to wakefulness from non-rapid eye movement (NREM) sleep but did not affect REM-wakefulness transitions. Unlike previous studies of BF glutamatergic and cholinergic neurons, arousals induced by stimulation of BF-PV neurons were brief and only slightly increased total wake time, reminiscent of clinical findings in sleep apnea [5, 6]. Bilateral optical inhibition of BF-PV neurons increased the latency to arousal produced by exposure to hypercarbia or auditory stimuli. Thus, BF-PV neurons are an important component of the brain circuitry that generates brief arousals from sleep in response to stimuli, which may indicate physiological dysfunction or danger to the organism.


Assuntos
Estimulação Acústica , Nível de Alerta/fisiologia , Carboidratos/administração & dosagem , Neurônios/fisiologia , Ração Animal/análise , Animais , Prosencéfalo Basal/fisiologia , Dieta , Camundongos , Parvalbuminas/metabolismo , Sono/fisiologia , Vigília/fisiologia
3.
Physiol Behav ; 207: 1-6, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31028763

RESUMO

We investigated whether wheel running for just 30 min on 5 days each week, an exercise routine based on recommended levels of physical activity for adults, regulates body weight and food intake in mice. Male C57BL/6 mice were divided into groups and given ad libitum access to high-fat food and standard chow or standard chow only. For 30 min on 5 days each week, mice were treated with an in-cage running wheel which was either open to allow voluntary exercise or locked and could not rotate for control. Wheel running reduced weight gain and fat mass among mice fed high-fat food and standard chow, but not mice fed standard chow only. Wheel running decreased high-fat food consumption. Standard chow intake was unchanged. Mice provided with a locked running wheel but pair-fed the same amount of food as wheel running mice also displayed reduced weight gain and fat mass. We conclude that voluntary wheel running for 30 min on 5 days each week reduced weight gain and fat mass in mice by preferentially decreasing high-fat food intake. This model of voluntary wheel running can be used to investigate mechanisms underlying the benefits of exercise on body weight and food intake, informing obesity intervention strategies for humans.


Assuntos
Dieta Hiperlipídica , Ingestão de Alimentos/fisiologia , Condicionamento Físico Animal/fisiologia , Corrida/fisiologia , Aumento de Peso/fisiologia , Adiposidade/fisiologia , Ração Animal , Animais , Ingestão de Energia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora
4.
Behav Brain Res ; 339: 124-129, 2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29180134

RESUMO

Females are an under-represented research model and the mechanisms through which sleep loss impairs cognition are not clear. Since levels of reproductive hormones and the estrous cycle are sensitive to sleep loss and necessary for learning and memory, we hypothesized that sleep deprivation impacts learning and memory in female mice by interfering with the estrous cycle. We used the object recognition task to assess learning and memory in female mice during separate phases of the estrous cycle and after sleep loss. Mice in metestrus/diestrus attended to sample objects less than mice in proestrus/estrus during object acquisition, the first phase of the object recognition task. Subsequently, during the recognition phase of the task, only mice in proestrus/estrus displayed a preference for the novel object. Sleep deprivation for 12h immediately before the object recognition task reduced time attending to sample objects and novel object preference for mice in proestrus/estrus, without changing length of the estrous cycle. These results show that sleep deprived mice in proestrus/estrus had learning deficits and memory impairments, like mice in metestrus/diestrus. Since sleep deprivation did not disrupt the estrous cycle, however, results did not support the hypothesis. Cognitive impairments due to acute sleep loss were not due to alterations to the estrous cycle.


Assuntos
Ciclo Estral/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Metestro/fisiologia , Privação do Sono/fisiopatologia , Animais , Comportamento Animal/fisiologia , Feminino , Camundongos Endogâmicos C57BL , Proestro/fisiologia
5.
Sci Rep ; 7(1): 7811, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798343

RESUMO

A brief burst-suppressing isoflurane anesthesia has been shown to rapidly alleviate symptoms of depression in a subset of patients, but the neurobiological basis of these observations remains obscure. We show that a single isoflurane anesthesia produces antidepressant-like behavioural effects in the learned helplessness paradigm and regulates molecular events implicated in the mechanism of action of rapid-acting antidepressant ketamine: activation of brain-derived neurotrophic factor (BDNF) receptor TrkB, facilitation of mammalian target of rapamycin (mTOR) signaling pathway and inhibition of glycogen synthase kinase 3ß (GSK3ß). Moreover, isoflurane affected neuronal plasticity by facilitating long-term potentiation in the hippocampus. We also found that isoflurane increased activity of the parvalbumin interneurons, and facilitated GABAergic transmission in wild type mice but not in transgenic mice with reduced TrkB expression in parvalbumin interneurons. Our findings strengthen the role of TrkB signaling in the antidepressant responses and encourage further evaluation of isoflurane as a rapid-acting antidepressant devoid of the psychotomimetic effects and abuse potential of ketamine.


Assuntos
Antidepressivos/administração & dosagem , Hipocampo/fisiologia , Isoflurano/administração & dosagem , Receptor trkB/metabolismo , Animais , Antidepressivos/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Desamparo Aprendido , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Isoflurano/farmacologia , Ketamina/farmacologia , Potenciação de Longa Duração , Masculino , Camundongos , Parvalbuminas/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
6.
J Neurosci ; 34(2): 554-65, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24403154

RESUMO

Brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, are critical components of the neural circuitry controlling appetite and body weight. Diminished BDNF signaling in mice results in severe hyperphagia and obesity. In humans, BDNF haploinsufficiency and the functional Bdnf Val66Met polymorphism have been linked to elevated food intake and body weight. The mechanisms underlying this dysfunction are poorly defined. We demonstrate a chief role of α2δ-1, a calcium channel subunit and thrombospondin receptor, in triggering overeating in mice with central BDNF depletion. We show reduced α2δ-1 cell-surface expression in the BDNF mutant ventromedial hypothalamus (VMH), an energy balance-regulating center. This deficit contributes to the hyperphagia exhibited by BDNF mutant mice because selective inhibition of α2δ-1 by gabapentin infusion into wild-type VMH significantly increases feeding and body weight gain. Importantly, viral-mediated α2δ-1 rescue in BDNF mutant VMH significantly mitigates their hyperphagia, obesity, and liver steatosis and normalizes deficits in glucose homeostasis. Whole-cell recordings in BDNF mutant VMH neurons revealed normal calcium currents but reduced frequency of EPSCs. These results suggest calcium channel-independent effects of α2δ-1 on feeding and implicate α2δ-1-thrombospondin interactions known to facilitate excitatory synapse assembly. Our findings identify a central mechanism mediating the inhibitory effects of BDNF on feeding. They also demonstrate a novel and critical role for α2δ-1 in appetite control and suggest a mechanism underlying weight gain in humans treated with gabapentinoid drugs.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/deficiência , Canais de Cálcio/metabolismo , Comportamento Alimentar/fisiologia , Hipotálamo/metabolismo , Obesidade/metabolismo , Animais , Western Blotting , Antígenos CD36/metabolismo , Hibridização In Situ , Masculino , Camundongos , Camundongos Mutantes , Neurônios/metabolismo , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Mol Neurobiol ; 44(3): 441-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22012072

RESUMO

The prevalence of obesity and its associated medical complications, including type 2 diabetes and cardiovascular disease, continues to rise globally. Lifestyle changes in the last decades have greatly contributed to the current obesity trends. However, inheritable biological factors that disrupt the tightly regulated equilibrium between caloric intake and energy expenditure also appear to play a critical part. Mounting evidence obtained from human and rodent studies suggests that perturbed brain-derived neurotrophic factor (BDNF) signaling in appetite-regulating centers in the brain might be a culprit. Here, we review findings that inform the critical roles of BDNF and its receptor TrkB in energy balance and reward centers of the brain impacting feeding behavior and body weight.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Comportamento Alimentar/fisiologia , Animais , Peso Corporal , Fator Neurotrófico Derivado do Encéfalo/genética , Ingestão de Energia , Metabolismo Energético , Humanos , Hipotálamo/anatomia & histologia , Hipotálamo/fisiologia , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Obesidade/metabolismo , Recompensa , Transdução de Sinais/fisiologia
8.
J Neurosci ; 30(7): 2533-41, 2010 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-20164338

RESUMO

Brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, play prominent roles in food intake regulation through central mechanisms. However, the neural circuits underlying their anorexigenic effects remain largely unknown. We showed previously that selective BDNF depletion in the ventromedial hypothalamus (VMH) of mice resulted in hyperphagic behavior and obesity. Here, we sought to ascertain whether its regulatory effects involved the mesolimbic dopamine system, which mediates motivated and reward-seeking behaviors including consumption of palatable food. We found that expression of BDNF and TrkB mRNA in the ventral tegmental area (VTA) of wild-type mice was influenced by consumption of palatable, high-fat food (HFF). Moreover, amperometric recordings in brain slices of mice depleted of central BDNF uncovered marked deficits in evoked release of dopamine in the nucleus accumbens (NAc) shell and dorsal striatum but normal secretion in the NAc core. Mutant mice also exhibited dramatic increases in HFF consumption, which were exacerbated when access to HFF was restricted. However, mutants displayed enhanced responses to D(1) receptor agonist administration, which normalized their intake of HFF in a 4 h food intake test. Finally, in contrast to deletion of Bdnf in the VMH of mice, which resulted in increased intake of standard chow, BDNF depletion in the VTA elicited excessive intake of HFF but not of standard chow and increased body weights under HFF conditions. Our findings indicate that the effects of BDNF on eating behavior are neural substrate-dependent and that BDNF influences hedonic feeding via positive modulation of the mesolimbic dopamine system.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Dopamina/metabolismo , Preferências Alimentares/fisiologia , Sistema Límbico/metabolismo , Recompensa , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Cromatografia Líquida de Alta Pressão/métodos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Gorduras na Dieta/administração & dosagem , Agonistas de Dopamina/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Técnicas Eletroquímicas/métodos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Técnicas In Vitro , Sistema Límbico/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , RNA Mensageiro/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Fatores de Tempo
9.
Behav Brain Res ; 197(2): 450-3, 2009 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-18805441

RESUMO

Sleep deprivation alters mood and anxiety in man. In rats, 24 h of treadmill-induced total sleep deprivation or sleep fragmentation increased exploratory behavior in an open field test of anxiety compared to cage or exercise controls. Plasma corticosterone (CORT) levels of sleep disturbed and exercise control rats were elevated compared to cage controls, suggesting that the increased exploration observed in the sleep disturbed rats was not due to a hypothalamic-pituitary-adrenal (HPA) stress response.


Assuntos
Ansiedade/fisiopatologia , Corticosterona/sangue , Comportamento Exploratório/fisiologia , Privação do Sono/fisiopatologia , Sono/fisiologia , Animais , Ansiedade/sangue , Ansiedade/etiologia , Masculino , Atividade Motora/fisiologia , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos F344 , Ratos Endogâmicos , Privação do Sono/sangue , Privação do Sono/psicologia , Estresse Fisiológico/fisiologia
10.
J Sleep Res ; 17(4): 365-75, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18823428

RESUMO

Sleepiness following 6 h of sleep deprivation (SD) was evaluated with a rat multiple sleep latencies test (rMSLT), and the findings were compared to conventional polysomnographic measures of sleepiness. The 6 h of SD was produced by automated activity wheels, and was terminated at either the end of the light period or at the beginning of the dark period. The rMSLT consisted of 5 min wakefulness induced by sensory stimulation followed by 25 min of freedom to sleep. This procedure was repeated every 30 min for 3 h and was designed to minimize the amount of sleep lost due to the testing procedure. In separate rats, 6 h SD was followed by undisturbed recovery, allowing evaluation of conventional polysomnographic measures of sleepiness. Sleep onset latencies were reduced following SD, with recovery in the light (baseline = 8 min, 3 s versus post-SD = 1 min, 17 s) and dark period (baseline = 14 min, 17 s versus 7 min, 7 s). Sleep onset latencies were not altered by varying the duration criterion for the first sleep bout (i.e., sleep bout length criteria of 10, 20, 30, or 60 s were compared). Polysomnographic variables (non-rapid eye movement sleep episode duration, delta power, and number of awakenings) also provided reliable indirect measures of sleepiness, regardless of whether the recovery sleep occurred in the light or dark period. Evaluation of effect size indicated that the rMSLT was a strong measure of sleepiness, and was influenced by homeostatic, circadian, and illumination factors. The rMSLT provided a simple, objective, robust and direct measure of sleepiness that was as effective as conventional polysomnographic measures of sleepiness.


Assuntos
Distúrbios do Sono por Sonolência Excessiva/diagnóstico , Polissonografia , Animais , Modelos Animais de Doenças , Eletroencefalografia , Eletromiografia , Movimentos Oculares , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Fases do Sono , Vigília
11.
Mol Cell Neurosci ; 39(3): 372-83, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18718867

RESUMO

Granule neurons generated in the adult mammalian hippocampus synaptically integrate to facilitate cognitive function and antidepressant efficacy. Here, we investigated the role of BDNF in facilitating their maturation in vivo. We found that depletion of central BDNF in mice elicited an increase in hippocampal cell proliferation without affecting cell survival or fate specification. However, new mutant neurons failed to fully mature as indicated by their lack of calbindin, reduced dendritic differentiation and an accumulation of calretinin(+) immature neurons in the BDNF mutant dentate gyrus. Furthermore, the facilitating effects of GABA(A) receptor stimulation on neurogenesis were absent in the mutants, suggesting that defects might be due to alterations in GABA signaling. Transcriptional analysis of the mutant hippocampal neurogenic region revealed increases in markers for immature neurons and decreases in neuronal differentiation facilitators. These findings demonstrate that BDNF is required for the terminal differentiation of new neurons in the adult hippocampus.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular/fisiologia , Hipocampo/citologia , Neurônios/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Movimento Celular , Proliferação de Células , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Receptor trkB/metabolismo , Receptores de GABA-A/metabolismo , Células-Tronco/citologia , Células-Tronco/fisiologia , Transcrição Gênica , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...