Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunology ; 166(3): 380-407, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35416297

RESUMO

In this study we show that glycosylation is relevant for immune recognition of therapeutic antibodies, and that defined glycan structures can modulate immunogenicity. Concerns regarding immunogenicity arise from the high heterogeneity in glycosylation that is difficult to control and can deviate from human glycosylation if produced in non-human cell lines. While non-human glycosylation is thought to cause hypersensitivity reactions and immunogenicity, less is known about effects of Fc-associated glycan structures on immune cell responses. We postulated that glycosylation influences antigen recognition and subsequently humoral responses to therapeutic antibodies by modulating 1) recognition and uptake by dendritic cells (DCs), and 2) antigen routing, processing and presentation. Here, we compared different glycosylation variants of the antibody rituximab (RTX) in in vitro assays using human DCs and T cells as well as in in vivo studies. We found that human DCs bind and internalize unmodified RTX stronger compared to its aglycosylated form suggesting that glycosylation mediates uptake after recognition by glycan-specific receptors. Furthermore, we show that DC-uptake of RTX increases or decreases if glycosylation is selectively modified to recognize activating (by mannosylation) or inhibitory lectin receptors (by sialylation). Moreover, glycosylation seems to influence antigen presentation by DCs because specific glycovariants tend to induce either stronger or weaker T cell activation. Finally, we demonstrate that antibody glycosylation impacts anti-drug antibody (ADA) responses to RTX in vivo. Hence, defined glycan structures can modulate immune recognition and alter ADA responses. Glyco-engineering may help to decrease clinical immunogenicity and ADA-associated adverse events such as hypersensitivity reactions.


Assuntos
Apresentação de Antígeno , Ativação Linfocitária , Glicosilação , Polissacarídeos/metabolismo , Linfócitos T
2.
Xenobiotica ; 49(1): 13-21, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29299977

RESUMO

1. The utility of 1-aminobenzotriazole (ABT), incorporated in food, has been investigated as an approach for longer term inhibition of cytochrome P450 (P450) enzymes in mice. 2. In rats, ABT inhibits gastric emptying, to investigate this potential limitation in mice we examined the effect of ABT administration on the oral absorption of NVS-CRF38. Two hour prior oral treatment with 100 mg/kg ABT inhibited the oral absorption of NVS-CRF38, Tmax was 4 hours for ABT-treated mice compared to 0.5 hours in the control group. 3. A marked inhibition of hepatic P450 activity was observed in mice fed with ABT containing food pellets for 1 month. P450 activity, as measured by the oral clearance of antipyrine, was inhibited on day 3 (88% of control), week 2 (83% of control) and week 4 (80% of control). 4. Tmax values for antipyrine were comparable between ABT-treated mice and the control group, alleviating concerns about impaired gastric function. 5. Inclusion of ABT in food provides a minimally invasive and convenient approach to achieve longer term inhibition of P450 activity in mice. This model has the potential to enable pharmacological proof-of-concept studies for research compounds which are extensively metabolised by P450 enzymes.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Triazóis/farmacologia , Administração Oral , Animais , Camundongos , Oxazóis/metabolismo , Pirazóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...