Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiat Res ; 201(2): 104-114, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38178781

RESUMO

In the present paper we numerically investigate, using Monte Carlo simulation, the theoretical results predicted by the Generalized Stochastic Microdosimetric Model (GSM2), as shown in the published companion paper. Taking advantage of the particle irradiation data ensemble (PIDE) dataset, we calculated GSM2 biological parameters of human salivary gland (HSG) and V79 cell lines. Further, exploiting the TOPAS-microdosimetric extension, we simulated the microdosimetric spectra of different radiation fields of therapeutic interest generated by four different ions (protons, helium-4, carbon-12 and oxygen-16) each at three different residual ranges. We investigated the properties of the initial damage distributions as well as the cell survival curve predicted by GSM2, focusing especially on the non-Poissonian effects naturally included in the model. GSM2 successfully computed cell survival curves, accurately describing experimental behavior even under challenging LET and dose conditions.


Assuntos
Prótons , Humanos , Eficiência Biológica Relativa , Sobrevivência Celular , Simulação por Computador , Linhagem Celular , Método de Monte Carlo
2.
Phys Rev E ; 103(1-1): 012412, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33601636

RESUMO

The present work introduces a rigorous stochastic model, called the generalized stochastic microdosimetric model (GSM^{2}), to describe biological damage induced by ionizing radiation. Starting from the microdosimetric spectra of energy deposition in tissue, we derive a master equation describing the time evolution of the probability density function of lethal and potentially lethal DNA damage induced by a given radiation to a cell nucleus. The resulting probability distribution is not required to satisfy any a priori conditions. After the initial assumption of instantaneous irradiation, we generalized the master equation to consider damage induced by a continuous dose delivery. In addition, spatial features and damage movement inside the nucleus have been taken into account. In doing so, we provide a general mathematical setting to fully describe the spatiotemporal damage formation and evolution in a cell nucleus. Finally, we provide numerical solutions of the master equation exploiting Monte Carlo simulations to validate the accuracy of GSM^{2}. Development of GSM^{2} can lead to improved modeling of radiation damage to both tumor and normal tissues, and thereby impact treatment regimens for better tumor control and reduced normal tissue toxicities.


Assuntos
Modelos Teóricos , Radiometria , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...