Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(13): 8323-8332, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32525672

RESUMO

Depleted oil reservoirs are considered a viable solution to the global challenge of CO2 storage. A key concern is whether the wells can be suitably sealed with cement to hinder the escape of CO2. Under reservoir conditions, CO2 is in its supercritical state, and the high pressures and temperatures involved make real-time microscopic observations of cement degradation experimentally challenging. Here, we present an in situ 3D dynamic X-ray micro computed tomography (µ-CT) study of well cement carbonation at realistic reservoir stress, pore-pressure, and temperature conditions. The high-resolution time-lapse 3D images allow monitoring the progress of reaction fronts in Portland cement, including density changes, sample deformation, and mineral precipitation and dissolution. By switching between flow and nonflow conditions of CO2-saturated water through cement, we were able to delineate regimes dominated by calcium carbonate precipitation and dissolution. For the first time, we demonstrate experimentally the impact of the flow history on CO2 leakage risk for cement plugging. In-situ µ-CT experiments combined with geochemical modeling provide unique insight into the interactions between CO2 and cement, potentially helping in assessing the risks of CO2 storage in geological reservoirs.


Assuntos
Dióxido de Carbono , Carbonatos , Materiais de Construção , Água , Microtomografia por Raio-X
2.
PeerJ ; 8: e8652, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32266112

RESUMO

Cryptoclidids are a major clade of plesiosauromorph plesiosaurians best known from the Middle-Late Jurassic, but little is known regarding their turnover into the Early Cretaceous. Of the known cryptoclidid genera, most preserve only a limited amount of cranial material and of these Cryptoclidus eurymerus, displays the most complete, but compressed cranium. Thus, the lack of knowledge of the cranial anatomy of this group may hinder the understanding of phylogenetic interrelationships, which are currently predominantly based on postcranial data. Here we present a nearly complete adult cryptoclidid specimen (PMO 224.248) representing a new genus and species Ophthalmothule cryostea gen et sp. nov., from the latest Jurassic to earliest Cretaceous part of the Slottsmøya Member, of central Spitsbergen. The holotype material preserves a complete cranium, partial mandible, complete and articulated cervical, pectoral and anterior to middle dorsal series, along with the pectoral girdle and anterior humeri. High resolution microcomputed tomography reveals new data on the cranial anatomy of this cryptoclidid, including new internal features of the braincase and palate that are observed in other cryptoclidids. A phylogenetic analysis incorporating new characters reveals a novel tree topology for Cryptoclididae and particularly within the subfamily Colymbosaurinae. These results show that at least two cryptoclidid lineages were present in the Boreal Region during the latest Jurassic at middle to high latitudes.

3.
Proc Natl Acad Sci U S A ; 116(33): 16234-16239, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31371500

RESUMO

Understanding the approach to faulting in continental rocks is critical for identifying processes leading to fracturing in geomaterials and the preparation process of large earthquakes. In situ dynamic X-ray imaging and digital volume correlation analysis of a crystalline rock core, under a constant confining pressure of 25 MPa, are used to elucidate the initiation, growth, and coalescence of microfractures leading to macroscopic failure as the axial compressive stress is increased. Following an initial elastic deformation, microfractures develop in the solid, and with increasing differential stress, the damage pervades the rock volume. The creation of new microfractures is accompanied by propagation, opening, and closing of existing microfractures, leading to the emergence of damage indices that increase as powers of the differential stress when approaching failure. A strong spatial correlation is observed between microscale zones with large positive and negative volumetric strains, microscale zones with shears of opposite senses, and microscale zones with high volumetric and shear strains. These correlations are attributed to microfracture interactions mediated by the heterogeneous stress field. The rock fails macroscopically as the microfractures coalesce and form a geometrically complex 3D volume that spans the rock sample. At the onset of failure, more than 70% of the damage volume is connected in a large fracture cluster that evolves into a fault zone. In the context of crustal faulting dynamics, these results suggest that evolving rock damage around existing locked or future main faults influences the localization process that culminates in large brittle rupture events.

4.
Nat Commun ; 7: 13585, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27876800

RESUMO

Magmatic intrusions and volcanic eruptions are intimately related phenomena. Shallow magma intrusion builds subsurface reservoirs that are drained by volcanic eruptions. Thus, the long-held view is that intrusions must precede and feed eruptions. Here we show that explosive eruptions can also cause magma intrusion. We provide an account of a rapidly emplaced laccolith during the 2011 rhyolite eruption of Cordón Caulle, Chile. Remote sensing indicates that an intrusion began after eruption onset and caused severe (>200 m) uplift over 1 month. Digital terrain models resolve a laccolith-shaped body ∼0.8 km3. Deformation and conduit flow models indicate laccolith depths of only ∼20-200 m and overpressures (∼1-10 MPa) that likely stemmed from conduit blockage. Our results show that explosive eruptions may rapidly force significant quantities of magma in the crust to build laccoliths. These iconic intrusions can thus be interpreted as eruptive features that pose unique and previously unrecognized volcanic hazards.

5.
J Synchrotron Radiat ; 23(Pt 4): 1030-4, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27359153

RESUMO

A hard X-ray transparent triaxial deformation apparatus, called HADES, has been developed by Sanchez Technologies and installed on the microtomography beamline ID19 at the European Radiation Synchrotron Facility (ESRF). This rig can be used for time-lapse microtomography studies of the deformation of porous solids (rocks, ceramics, metallic foams) at conditions of confining pressure to 100 MPa, axial stress to 200 MPa, temperature to 250°C, and controlled aqueous fluid flow. It is transparent to high-energy X-rays above 60 keV and can be used for in situ studies of coupled processes that involve deformation and chemical reactions. The rig can be installed at synchrotron radiation sources able to deliver a high-flux polychromatic beam in the hard X-ray range to acquire tomographic data sets with a voxel size in the range 0.7-6.5 µm in less than two minutes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...