Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37959455

RESUMO

In this paper, the experimentally observed significant increase in yield stress for strain rates beyond 104 s-1 (viscous regime) is explicitly considered in laser shock processing (LSP) simulations. First, a detailed review of the most common high-strain-rate deformation models is presented, highlighting the expected strain rates in materials subject to LSP for a wide range of treatment conditions. Second, the abrupt yield stress increase presented beyond 104 s-1 is explicitly considered in the material model of a titanium alloy subject to LSP. A combined numerical-analytical approach is used to predict the time evolution of the plastic strain. Finally, extended areas are irradiated covering a squared area of 25 × 25 mm2 for numerical-experimental validation. The in-depth experimental residual stress profiles are obtained by means of the hole drilling method. Near-surface-temperature gradients are explicitly considered in simulations. In summary, the conventionally accepted strain rate range in LSP (106-107 s-1) is challenged in this paper. Results show that the conventional high-strain-rate hardening models widely used in LSP simulations (i.e., Johnson Cook model) clearly overestimate the induced compressive residual stresses. Additionally, pressure decay, whose importance is usually neglected, has been found to play a significant role in the total plastic strain achieved by LSP treatments.

2.
Materials (Basel) ; 13(24)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322626

RESUMO

The effect of process parameters and the orientation of the cladding layer on the mechanical properties of 316L stainless steel components manufactured by laser metal deposition (LMD) was investigated. High aspect-ratio walls were manufactured with layers of a 4.5 mm wide single-cladding track to study the microstructure and mechanical properties along the length and the height of the wall. Samples for the tensile test (according to ASTM E-8M-04) were machined from the wall along both the direction of the layers and the direction perpendicular to them. Cross-sections of the LMD samples were analyzed by optical and scanning electron microscopy (SEM). The orientation of the growing grain was observed. It was associated with the thermal gradient through the building part. A homogeneous microstructure between consecutive layers and some degree of microporosity was observed by SEM. Uniaxial tension tests were performed on samples extracted from the wall in perpendicular and parallel directions. Results for ultimate tensile strength were similar in both cases and with the wrought material. The σ0.2 were similar in both cases but slightly superior to the wrought material.

3.
Materials (Basel) ; 11(8)2018 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-30103537

RESUMO

One of the main limiting factors for a widespread industrial use of the Selective Laser Melting Process it its lack of productivity, which restricts the use of this technology just for high added-value components. Typically, the thickness of the metallic powder that is used lies on the scale of micrometers. The use of a layer up to one millimeter would be necessarily associated to a dramatic increase of productivity. Nevertheless, when the layer thickness increases, the complexity of consolidation phenomena makes the process difficult to be governed. The present work proposes a 3D finite element thermo-coupled model to study the evolution from the metallic powder to the final consolidated material, analyzing specifically the movements and loads of the melt pool, and defining the behavior of some critical thermophysical properties as a function of temperature and the phase of the material. This model uses advanced numerical tools such as the Arbitrary Lagrangean⁻Eulerian formulation and the Automatic Remeshing technique. A series of experiments have been carried out, using a high thickness powder layer, allowing for a deeper understanding of the consolidation phenomena and providing a reference to compare the results of the numerical calculations.

4.
Sensors (Basel) ; 18(2)2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29393916

RESUMO

This paper presents a novel structural piezoresistive pressure sensor with four-grooved membrane combined with rood beam to measure low pressure. In this investigation, the design, optimization, fabrication, and measurements of the sensor are involved. By analyzing the stress distribution and deflection of sensitive elements using finite element method, a novel structure featuring high concentrated stress profile (HCSP) and locally stiffened membrane (LSM) is built. Curve fittings of the mechanical stress and deflection based on FEM simulation results are performed to establish the relationship between mechanical performance and structure dimension. A combination of FEM and curve fitting method is carried out to determine the structural dimensions. The optimized sensor chip is fabricated on a SOI wafer by traditional MEMS bulk-micromachining and anodic bonding technology. When the applied pressure is 1 psi, the sensor achieves a sensitivity of 30.9 mV/V/psi, a pressure nonlinearity of 0.21% FSS and an accuracy of 0.30%, and thereby the contradiction between sensitivity and linearity is alleviated. In terms of size, accuracy and high temperature characteristic, the proposed sensor is a proper choice for measuring pressure of less than 1 psi.

5.
Rev Sci Instrum ; 88(3): 035002, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28372406

RESUMO

A novel structural piezoresistive pressure sensor with annularly grooved membrane combined with rood beam has been proposed for low pressure measurements based on silicon substrate. In this study, a design method, including the model design, dimensions optimization, and performance prediction of the novel structure sensor, is presented. The finite element method has been used to analyze the stress distribution of sensitive elements and the deflection of membrane. On the basis of simulation results, the relationships between structural dimension variables and mechanical performance are deduced, which make the fabrication processes more efficient. According to statistics theory, the coefficient of determination R2 and residual sum of squares are introduced to indicate whether the fitting equations and curves match well with the simulation results. After that, a series of the optimal membrane dimensions are determined. Compared with other structural sensors, the optimized sensor achieves the best overall properties as it mitigates the contradiction between sensitivity and linearity. The reasons why the proposed sensor can maximize sensitivity and minimize nonlinearity are also discussed. By localizing more strain energy in the high concentrated stress profile and creating partially stiffened membrane, the proposed sensor has achieved a high sensitivity of 34.5 (mV/V)/psi and a low nonlinearity of 0.25% FSS. Thus, the proposed structure sensor will be a proper choice for low pressure applications less than 1 psi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...