Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4005, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414790

RESUMO

TET2/3 play a well-known role in epigenetic regulation and mouse development. However, their function in cellular differentiation and tissue homeostasis remains poorly understood. Here we show that ablation of TET2/3 in intestinal epithelial cells results in a murine phenotype characterized by a severe homeostasis imbalance in the small intestine. Tet2/3-deleted mice show a pronounced loss of mature Paneth cells as well as fewer Tuft and more Enteroendocrine cells. Further results show major changes in DNA methylation at putative enhancers, which are associated with cell fate-determining transcription factors and functional effector genes. Notably, pharmacological inhibition of DNA methylation partially rescues the methylation and cellular defects. TET2/3 loss also alters the microbiome, predisposing the intestine to inflammation under homeostatic conditions and acute inflammation-induced death. Together, our results uncover previously unrecognized critical roles for DNA demethylation, possibly occurring subsequently to chromatin opening during intestinal development, culminating in the establishment of normal intestinal crypts.


Assuntos
Dioxigenases , Epigênese Genética , Animais , Camundongos , Diferenciação Celular/genética , Dioxigenases/metabolismo , Metilação de DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Homeostase , Inflamação/metabolismo , Intestino Delgado/metabolismo
2.
Diabetologia ; 64(5): 1133-1143, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33558985

RESUMO

AIMS/HYPOTHESIS: Acute hyperglycaemia stimulates pancreatic beta cell proliferation in the mouse whereas chronic hyperglycaemia appears to be toxic. We hypothesise that this toxic effect is mediated by increased beta cell workload, unrelated to hyperglycaemia per se. METHODS: To test this hypothesis, we developed a novel mouse model of cell-autonomous increased beta cell glycolytic flux caused by a conditional heterozygous beta cell-specific mutation that activates glucokinase (GCK), mimicking key aspects of the rare human genetic disease GCK-congenital hyperinsulinism. RESULTS: In the mutant mice, we observed random and fasting hypoglycaemia (random 4.5-5.4 mmol/l and fasting 3.6 mmol/l) that persisted for 15 months. GCK activation led to increased beta cell proliferation as measured by Ki67 expression (2.7% vs 1.5%, mutant and wild-type (WT), respectively, p < 0.01) that resulted in a 62% increase in beta cell mass in young mice. However, by 8 months of age, mutant mice developed impaired glucose tolerance, which was associated with decreased absolute beta cell mass from 2.9 mg at 1.5 months to 1.8 mg at 8 months of age, with preservation of individual beta cell function. Impaired glucose tolerance was further exacerbated by a high-fat/high-sucrose diet (AUC 1796 vs 966 mmol/l × min, mutant and WT, respectively, p < 0.05). Activation of GCK was associated with an increased DNA damage response and an elevated expression of Chop, suggesting metabolic stress as a contributor to beta cell death. CONCLUSIONS/INTERPRETATION: We propose that increased workload-driven biphasic beta cell dynamics contribute to decreased beta cell function observed in long-standing congenital hyperinsulinism and type 2 diabetes.


Assuntos
Hiperinsulinismo Congênito/patologia , Glucoquinase/genética , Células Secretoras de Insulina/patologia , Animais , Contagem de Células , Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Feminino , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Tamanho do Órgão
3.
Nat Commun ; 11(1): 1936, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321913

RESUMO

The intestinal epithelium is a structured organ composed of crypts harboring Lgr5+ stem cells, and villi harboring differentiated cells. Spatial transcriptomics have demonstrated profound zonation of epithelial gene expression along the villus axis, but the mechanisms shaping this spatial variability are unknown. Here, we combine laser capture micro-dissection and single cell RNA sequencing to uncover spatially zonated populations of mesenchymal cells along the crypt-villus axis. These include villus tip telocytes (VTTs) that express Lgr5, a gene previously considered a specific crypt epithelial stem cell marker. VTTs are elongated cells that line the villus tip epithelium and signal through Bmp morphogens and the non-canonical Wnt5a ligand. Their ablation is associated with perturbed zonation of enterocyte genes induced at the villus tip. Our study provides a spatially-resolved cell atlas of the small intestinal stroma and exposes Lgr5+ villus tip telocytes as regulators of the epithelial spatial expression programs along the villus axis.


Assuntos
Enterócitos/metabolismo , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Enterócitos/citologia , Mucosa Intestinal/citologia , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/genética , Células Estromais/metabolismo , Proteína Wnt-5a/metabolismo
4.
Sci Rep ; 9(1): 2884, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814586

RESUMO

Diabetes mellitus (DM) significantly increases susceptibility to central nervous system (CNS) pathologies, including stroke, vascular dementia, cognitive deficits and Alzheimer's disease. Previous studies (mostly using the streptozotocin model) suggested that blood-brain barrier (BBB) disruption is involved in these conditions. Here, we examined the integrity of brain capillaries and BBB permeability in Leprdb/db obesity-related diabetic mice. Surprisingly, significant BBB leakage was observed only in young mice at the pre-hyperglycemic stage. Thorough examination of barrier permeability at later diabetic stages showed no evidence for significant BBB leakage during the hyperglycemic state. Electron microscopy imaging of mice with short-term hyperglycaemia supported normal BBB permeability but indicated other stress-related changes in capillary ultrastructure, such as mitochondrial degeneration. Based on our study with this mouse genetic model of obesity-related DM, we suggest that previously reported hyperglycaemia-induced BBB leakage is most likely not the underlying mechanism of DM-related CNS pathologies. Finally we propose that BBB hyper-permeability might be an early and transient phenomenon while stress-related endothelial pathologies do correlate with a short-term diabetic state.


Assuntos
Barreira Hematoencefálica/patologia , Diabetes Mellitus Experimental/fisiopatologia , Modelos Animais de Doenças , Hiperglicemia/fisiopatologia , Obesidade/fisiopatologia , Receptores para Leptina/fisiologia , Animais , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Feminino , Masculino , Camundongos , Camundongos Knockout
5.
Diabetes ; 67(11): 2305-2318, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150306

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease where pancreatic ß-cells are destroyed by islet-infiltrating T cells. Although a role for ß-cell defects has been suspected, ß-cell abnormalities are difficult to demonstrate. We show a ß-cell DNA damage response (DDR), presented by activation of the 53BP1 protein and accumulation of p53, in biopsy and autopsy material from patients with recently diagnosed T1D as well as a rat model of human T1D. The ß-cell DDR is more frequent in islets infiltrated by CD45+ immune cells, suggesting a link to islet inflammation. The ß-cell toxin streptozotocin (STZ) elicits DDR in islets, both in vivo and ex vivo, and causes elevation of the proinflammatory molecules IL-1ß and Cxcl10. ß-Cell-specific inactivation of the master DNA repair gene ataxia telangiectasia mutated (ATM) in STZ-treated mice decreases the expression of proinflammatory cytokines in islets and attenuates the development of hyperglycemia. Together, these data suggest that ß-cell DDR is an early event in T1D, possibly contributing to autoimmunity.


Assuntos
Dano ao DNA/imunologia , Diabetes Mellitus Tipo 1/imunologia , Inflamação/imunologia , Células Secretoras de Insulina/imunologia , Ilhotas Pancreáticas/imunologia , Adulto , Animais , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/patologia , Feminino , Humanos , Inflamação/patologia , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem
6.
Diabetes ; 65(7): 2081-93, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26993067

RESUMO

The molecular program underlying infrequent replication of pancreatic ß-cells remains largely inaccessible. Using transgenic mice expressing green fluorescent protein in cycling cells, we sorted live, replicating ß-cells and determined their transcriptome. Replicating ß-cells upregulate hundreds of proliferation-related genes, along with many novel putative cell cycle components. Strikingly, genes involved in ß-cell functions, namely, glucose sensing and insulin secretion, were repressed. Further studies using single-molecule RNA in situ hybridization revealed that in fact, replicating ß-cells double the amount of RNA for most genes, but this upregulation excludes genes involved in ß-cell function. These data suggest that the quiescence-proliferation transition involves global amplification of gene expression, except for a subset of tissue-specific genes, which are "left behind" and whose relative mRNA amount decreases. Our work provides a unique resource for the study of replicating ß-cells in vivo.


Assuntos
Divisão Celular/genética , Proliferação de Células/genética , Células Secretoras de Insulina/metabolismo , Transcriptoma , Animais , Citometria de Fluxo , Regulação da Expressão Gênica , Células Secretoras de Insulina/citologia , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Transgênicos
7.
Diabetes ; 62(8): 2843-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23630298

RESUMO

The frequency of pancreatic ß-cell replication declines dramatically with age, potentially contributing to the increased risk of type 2 diabetes in old age. Previous studies have shown the involvement of cell-autonomous factors in this phenomenon, particularly the decline of polycomb genes and accumulation of p16/INK4A. Here, we demonstrate that a systemic factor found in the circulation of young mice is able to increase the proliferation rate of old pancreatic ß-cells. Old mice parabiosed to young mice have increased ß-cell replication compared with unjoined old mice or old mice parabiosed to old mice. In addition, we demonstrate that old ß-cells transplanted into young recipients have increased replication rate compared with cells transplanted into old recipients; conversely, young ß-cells transplanted into old mice decrease their replication rate compared with young cells transplanted into young recipients. The expression of p16/INK4A mRNA did not change in heterochronic parabiosis, suggesting the involvement of other pathways. We conclude that systemic factors contribute to the replicative decline of old pancreatic ß-cells.


Assuntos
Proliferação de Células , Células Secretoras de Insulina/fisiologia , Fatores Etários , Envelhecimento/fisiologia , Animais , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Células Secretoras de Insulina/citologia , Camundongos , Parabiose , Transdução de Sinais/fisiologia
8.
Dev Cell ; 23(4): 681-90, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23000141

RESUMO

Most adult mammalian tissues are quiescent, with rare cell divisions serving to maintain homeostasis. At present, the isolation and study of replicating cells from their in vivo niche typically involves immunostaining for intracellular markers of proliferation, causing the loss of sensitive biological material. We describe a transgenic mouse strain, expressing a CyclinB1-GFP fusion reporter, that marks replicating cells in the S/G2/M phases of the cell cycle. Using flow cytometry, we isolate live replicating cells from the liver and compare their transcriptome to that of quiescent cells to reveal gene expression programs associated with cell proliferation in vivo. We find that replicating hepatocytes have reduced expression of genes characteristic of liver differentiation. This reporter system provides a powerful platform for gene expression and metabolic and functional studies of replicating cells in their in vivo niche.


Assuntos
Proliferação de Células , Hepatócitos/citologia , Transcrição Gênica/genética , Transcriptoma , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Ciclo Celular , Diferenciação Celular , Sobrevivência Celular , Ciclina B1/genética , Ciclina B1/metabolismo , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hepatócitos/metabolismo , Camundongos , Camundongos Transgênicos , Células NIH 3T3 , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real
9.
Cell Metab ; 13(4): 440-449, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21459328

RESUMO

Recent studies revealed a surprising regenerative capacity of insulin-producing ß cells in mice, suggesting that regenerative therapy for human diabetes could in principle be achieved. Physiologic ß cell regeneration under stressed conditions relies on accelerated proliferation of surviving ß cells, but the factors that trigger and control this response remain unclear. Using islet transplantation experiments, we show that ß cell mass is controlled systemically rather than by local factors such as tissue damage. Chronic changes in ß cell glucose metabolism, rather than blood glucose levels per se, are the main positive regulator of basal and compensatory ß cell proliferation in vivo. Intracellularly, genetic and pharmacologic manipulations reveal that glucose induces ß cell replication via metabolism by glucokinase, the first step of glycolysis, followed by closure of K(ATP) channels and membrane depolarization. Our data provide a molecular mechanism for homeostatic control of ß cell mass by metabolic demand.


Assuntos
Glicemia/metabolismo , Células Secretoras de Insulina/fisiologia , Regeneração , Animais , Membrana Celular/fisiologia , Proliferação de Células , Glucoquinase/antagonistas & inibidores , Glucoquinase/metabolismo , Glicólise , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/transplante , Canais KATP/metabolismo , Camundongos
10.
Endocrinology ; 152(7): 2589-98, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21521747

RESUMO

Understanding the molecular triggers of pancreatic ß-cell proliferation may facilitate the development of regenerative therapies for diabetes. Genetic studies have demonstrated an important role for cyclin D2 in ß-cell proliferation and mass homeostasis, but its specific function in ß-cell division and mechanism of regulation remain unclear. Here, we report that cyclin D2 is present at high levels in the nucleus of quiescent ß-cells in vivo. The major regulator of cyclin D2 expression is glucose, acting via glycolysis and calcium channels in the ß-cell to control cyclin D2 mRNA levels. Furthermore, cyclin D2 mRNA is down-regulated during S-G(2)-M phases of each ß-cell division, via a mechanism that is also affected by glucose metabolism. Thus, glucose metabolism maintains high levels of nuclear cyclin D2 in quiescent ß-cells and modulates the down-regulation of cyclin D2 in replicating ß-cells. These data challenge the standard model for regulation of cyclin D2 during the cell division cycle and suggest cyclin D2 as a molecular link between glucose levels and ß-cell replication.


Assuntos
Canais de Cálcio/metabolismo , Proliferação de Células , Ciclina D2/metabolismo , Glucose/metabolismo , Glicólise , Ilhotas Pancreáticas/metabolismo , Animais , Agonistas dos Canais de Cálcio/farmacologia , Ciclo Celular , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Ciclina D2/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...