Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(24): 31399-31406, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38836799

RESUMO

Layered perovskites, a novel class of two-dimensional (2D) layered materials, exhibit versatile photophysical properties of great interest in photovoltaics and optoelectronics. However, their instability to environmental factors, particularly water, has limited their utility. In this study, we introduce an innovative solution to the problem by leveraging the unique properties of natural beeswax as a protective coating of 2D-fluorinated phenylethylammonium lead iodide perovskite. These photodetectors show outstanding figures of merit, such as a responsivity of >2200 A/W and a detectivity of 2.4 × 1018 Jones. The hydrophobic nature of beeswax endows the 2D perovskite sensors with an unprecedented resilience to prolonged immersion in contaminated water, and it increases the lifespan of devices to a period longer than one year. At the same time, the biocompatibility of the beeswax and its self-cleaning properties make it possible to use the very same turbidity sensors for healthcare in photoplethysmography and monitor the human heartbeat with clear systolic and diastolic signatures. Beeswax-enabled multipurpose optoelectronics paves the way to sustainable electronics by ultimately reducing the need for multiple components.


Assuntos
Compostos de Cálcio , Óxidos , Titânio , Ceras , Compostos de Cálcio/química , Titânio/química , Óxidos/química , Ceras/química , Humanos , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Chumbo/química , Chumbo/análise
2.
Adv Mater ; 36(27): e2312131, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38632702

RESUMO

Room temperature (RT) polariton condensate holds exceptional promise for revolutionizing various fields of science and technology, encompassing optoelectronics devices to quantum information processing. Using perovskite materials, like all-inorganic cesium lead bromide (CsPbBr3) single crystal, provides additional advantages, such as ease of synthesis, cost-effectiveness, and compatibility with existing semiconductor technologies. In this work, the formation of whispering gallery modes (WGM) in CsPbBr3 single crystals with controlled geometry is shown, synthesized using a low-cost and efficient capillary bridge method. Through the implementation of microplatelets geometry, enhanced optical properties and performance are achieved due to the presence of sharp edges and a uniform surface, effectively avoiding non-radiative scattering losses caused by defects. This allows not only to observe strong light matter coupling and formation of whispering gallery polaritons, but also to demonstrate the onset of polariton condensation at RT. This investigation not only contributes to the advancement of the knowledge concerning the exceptional optical properties of perovskite-based polariton systems, but also unveils prospects for the exploration of WGM polariton condensation within the framework of a 3D perovskite-based platform, working at RT. The unique characteristics of polariton condensate, including low excitation thresholds and ultrafast dynamics, open up unique opportunities for advancements in photonics and optoelectronics devices.

3.
Sci Adv ; 8(47): eadd8857, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36417518

RESUMO

Rhenium disulfide belongs to group VII transition metal dichalcogenides (TMDs) with attractive properties such as exceptionally high refractive index and remarkable oscillator strength, large in-plane birefringence, and good chemical stability. Unlike most other TMDs, the peculiar optical properties of rhenium disulfide persist from bulk to the monolayer, making this material potentially suitable for applications in optical devices. In this work, we demonstrate with unprecedented clarity the strong coupling between cavity modes and excited states, which results in a strong polariton interaction, showing the interest of these materials as a solid-state counterpart of Rydberg atomic systems. Moreover, we definitively clarify the nature of important spectral features, shedding light on some controversial aspects or incomplete interpretations and demonstrating that their origin is due to the interesting combination of the very high refractive index and the large oscillator strength expressed by these TMDs.

5.
Nat Nanotechnol ; 16(12): 1349-1354, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34675412

RESUMO

The engineering of the energy dispersion of polaritons in microcavities through nanofabrication or through the exploitation of intrinsic material and cavity anisotropies has demonstrated many intriguing effects related to topology and emergent gauge fields such as the anomalous quantum Hall and Rashba effects. Here we show how we can obtain different Berry curvature distributions of polariton bands in a strongly coupled organic-inorganic two-dimensional perovskite single-crystal microcavity. The spatial anisotropy of the perovskite crystal combined with photonic spin-orbit coupling produce two Hamilton diabolical points in the dispersion. An external magnetic field breaks time-reversal symmetry owing to the exciton Zeeman splitting and lifts the degeneracy of the diabolical points. As a result, the bands possess non-zero integral Berry curvatures, which we directly measure by state tomography. In addition to the determination of the different Berry curvatures of the multimode microcavity dispersions, we can also modify the Berry curvature distribution, the so-called band geometry, within each band by tuning external parameters, such as temperature, magnetic field and sample thickness.

6.
Nanomaterials (Basel) ; 11(2)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670330

RESUMO

Hybrid organic-inorganic perovskites are very promising semiconductors for many optoelectronic applications, although their extensive use is limited by their poor stability under environmental conditions. In this work, we synthesize two-dimensional perovskite single crystals and investigate their optical and structural evolution under continuous light irradiation. We found that the hydrophobic nature of the fluorinated component, together with the absence of grain boundary defects, lead to improved material stability thanks to the creation of a robust barrier that preserve the crystalline structure, hindering photo-degradation processes usually promoted by oxygen and moisture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...