Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Entomol ; 51(4): 836-847, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35854655

RESUMO

While many factors have been implicated in global pollinator decline, habitat loss is a key driver of wild pollinator decline in both abundance and species richness. An increase in and diversification of pollinator habitat, even in urban settings, can assist in the conservation of pollinator populations. In Southern California, a highly fragmented and urbanized landscape with a rich yet threatened native pollinator fauna, the availability of food resources for native pollinators hinges largely upon the selection of ornamental plants grown in the urban landscape. To examine the pollinator attractiveness of ornamental plants in a Southern California context, we installed an experimental garden with common California native and nonnative ornamental perennials and observed floral visitation and visitor community composition for 3 yr. Our study demonstrates that while native pollinators visited common ornamental perennials native to California at a higher rate than they visited nonnative ornamentals, introduced honey bees showed no significant preference for either native or nonnative species. Native plants also received a greater diversity of visitor taxa, including a richer suite of native bees. Plant species differed dramatically in attractiveness, by as much as a factor of 12, even within the native status group. Our results suggest that including a data-driven selection of both native and non-native ornamental perennials in the urban landscape can diversify the assemblage of native pollinators, provide critical floral resources throughout the year, and reduce the impact of honey bee landscape foraging dominance by providing plants highly attractive to native pollinators and less so to honey bees.


Assuntos
Geraniaceae , Polinização , Animais , Abelhas , California , Ecossistema , Flores , Plantas
2.
Chemosphere ; 281: 130753, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34015651

RESUMO

Dissipation and transformation of cyantraniliprole, a new diamide class of insecticides, were investigated under greenhouse conditions, using snapdragon (Antirrhinum majus) as the model plant. Dissipation of cyantraniliprole in treated leaves was found to be dependent upon application methods (foliar spray versus soil drench) and doses (high versus low dose), with the parent insecticide being the major residue at various sampling points. A high-dose foliar application resulted in pesticide residue of 6.7-23.8 µg/g foliar fresh weight over 8 weeks of treatments, while in soil drench treatment the residue varied from 0.8 to 1.4 µg/g. However, the residue contents were similar between the two application methods at a low application dose. The transformation pathways of cyantraniliprole were primarily intramolecular rearrangements, with IN-J9Z38 being the major metabolite across treatments. Several other metabolites were also identified, some of which were unique to the application methods. Out of total 26 metabolites tentatively identified in this study, 10 metabolites were unique to foliar application, while six metabolites were unique to soil drench. In addition to plant-mediated biotransformation, photodegradation of the parent compound was identified as a potential mechanism in foliar application.


Assuntos
Antirrhinum , Inseticidas , Resíduos de Praguicidas , Diamida , Inseticidas/análise , Resíduos de Praguicidas/análise , Pirazóis , ortoaminobenzoatos/análise
3.
Ecology ; 89(10): 2868-78, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18959324

RESUMO

Human activities release tremendous amounts of nitrogenous compounds into the atmosphere. Wet and dry deposition distributes this airborne nitrogen (N) on otherwise pristine ecosystems. This eutrophication process significantly alters the species composition of native grasslands; generally a few nitrophilic plant species become dominant while many other species disappear. The functional equilibrium model predicts that, compared to species that decline in response to N enrichment, nitrophilic grass species should respond to N enrichment with greater biomass allocation aboveground and reduced allocation to roots and mycorrhizas. The mycorrhizal feedback hypothesis states that the composition of mycorrhizal fungal communities may influence the composition of plant communities, and it predicts that N enrichment may generate reciprocal shifts in the species composition of mycorrhizal fungi and plants. We tested these hypotheses with experiments that compared biomass allocation and mycorrhizal function of four grass ecotypes (three species), two that gained and two that lost biomass and cover in response to long-term N enrichment experiments at Cedar Creek and Konza Long-Term Ecological Research grasslands. Local grass ecotypes were grown in soil from their respective sites and inoculated with whole-soil inoculum collected from either fertilized (FERT) or unfertilized (UNFERT) plots. Our results strongly support the functional equilibrium model. In both grassland systems the nitrophilic grass species grew taller, allocated more biomass to shoots than to roots, and formed fewer mycorrhizas compared to the grass species that it replaced. Our results did not fully support the hypothesis that N-induced changes in the mycorrhizal fungal community were drivers of the plant community shifts that accompany N eutrophication. The FERT and UNFERT soil inoculum influenced the growth of the grasses differently, but this varied with site and grass ecotype in both expected and unexpected ways suggesting that ambient soil fertility or other factors may be interacting with mycorrhizal feedbacks.


Assuntos
Biodiversidade , Eutrofização , Fertilizantes , Micorrizas/crescimento & desenvolvimento , Nitrogênio/metabolismo , Poaceae/crescimento & desenvolvimento , Biomassa , Ecossistema , Micorrizas/metabolismo , Poaceae/classificação , Poaceae/metabolismo , Poaceae/microbiologia , Solo/análise , Solo/normas , Microbiologia do Solo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...