Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Affect Disord ; 354: 589-600, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38484878

RESUMO

BACKGROUND: Transcranial magnetic stimulation (TMS) is an intervention for treatment-resistant depression (TRD) that modulates neural activity. Deep TMS (dTMS) can target not only cortical but also deeper limbic structures implicated in depression. Although TMS has demonstrated safety in adolescents, dTMS has yet to be applied to adolescent TRD. OBJECTIVE/HYPOTHESIS: This pilot study evaluated the safety, tolerability, and clinical effects of dTMS in adolescents with TRD. We hypothesized dTMS would be safe, tolerable, and efficacious for adolescent TRD. METHODS: 15 adolescents with TRD (Age, years: M = 16.4, SD = 1.42) completed a six-week daily dTMS protocol targeting the left dorsolateral prefrontal cortex (BrainsWay H1 coil, 30 sessions, 10 Hz, 3.6 s train duration, 20s inter-train interval, 55 trains; 1980 total pulses per session, 80 % to 120 % of motor threshold). Participants completed clinical, safety, and neurocognitive assessments before and after treatment. The primary outcome was depression symptom severity measured by the Children's Depression Rating Scale-Revised (CDRS-R). RESULTS: 14 out of 15 participants completed the dTMS treatments. One participant experienced a convulsive syncope; the other participants only experienced mild side effects (e.g., headaches). There were no serious adverse events and minimal to no change in cognitive performance. Depression symptom severity significantly improved pre- to post-treatment and decreased to a clinically significant degree after 10 treatment sessions. Six participants met criteria for treatment response. LIMITATIONS: Main limitations include a small sample size and open-label design. CONCLUSIONS: These findings provide preliminary evidence that dTMS may be tolerable and associated with clinical improvement in adolescent TRD.


Assuntos
Transtorno Depressivo Resistente a Tratamento , Estimulação Magnética Transcraniana , Criança , Humanos , Adolescente , Estimulação Magnética Transcraniana/efeitos adversos , Estimulação Magnética Transcraniana/métodos , Depressão , Projetos Piloto , Resultado do Tratamento , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Córtex Pré-Frontal
2.
Neuropsychopharmacology ; 46(11): 1864-1872, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34253855

RESUMO

Astrocytes are fundamental components of brain information processing and possess the ability to respond to synaptic signaling with increases in cytoplasmic calcium and modulate neuronal activity with the subsequent release of neuroactive transmitters. Dopamine signaling is essential for brain physiology and pathology, participating in learning and memory, motor control, neurological diseases, and psychiatric diseases, and astrocytes are emerging as a key cellular target of dopamine signaling. The present review will examine evidence revealing that astrocytes respond to dopamine and modulate information processing in the primary brain regions implicated in the mesolimbic dopamine system. Astrocytes exhibit circuit-specific modulation of neuronal networks and have the potential to serve as a therapeutic target for interventions designed for dopamine pathologies.


Assuntos
Astrócitos , Dopamina , Encéfalo , Sinalização do Cálcio , Neurônios , Transdução de Sinais
3.
Neuron ; 105(6): 1036-1047.e5, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31954621

RESUMO

Dopamine is involved in physiological processes like learning and memory, motor control and reward, and pathological conditions such as Parkinson's disease and addiction. In contrast to the extensive studies on neurons, astrocyte involvement in dopaminergic signaling remains largely unknown. Using transgenic mice, optogenetics, and pharmacogenetics, we studied the role of astrocytes on the dopaminergic system. We show that in freely behaving mice, astrocytes in the nucleus accumbens (NAc), a key reward center in the brain, respond with Ca2+ elevations to synaptically released dopamine, a phenomenon enhanced by amphetamine. In brain slices, synaptically released dopamine increases astrocyte Ca2+, stimulates ATP/adenosine release, and depresses excitatory synaptic transmission through activation of presynaptic A1 receptors. Amphetamine depresses neurotransmission through stimulation of astrocytes and the consequent A1 receptor activation. Furthermore, astrocytes modulate the acute behavioral psychomotor effects of amphetamine. Therefore, astrocytes mediate the dopamine- and amphetamine-induced synaptic regulation, revealing a novel cellular pathway in the brain reward system.


Assuntos
Astrócitos/fisiologia , Dopamina/fisiologia , Núcleo Accumbens/fisiologia , Transmissão Sináptica/fisiologia , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Anfetamina/farmacologia , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Clozapina/análogos & derivados , Clozapina/farmacologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Atividade Motora/fisiologia , Optogenética , Receptores de Dopamina D1/genética , Recompensa
4.
Cells ; 8(6)2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31207909

RESUMO

Major hallmarks of astrocyte physiology are the elevation of intracellular calcium in response to neurotransmitters and the release of neuroactive substances (gliotransmitters) that modulate neuronal activity. While µ-opioid receptor expression has been identified in astrocytes of the nucleus accumbens, the functional consequences on astrocyte-neuron communication remains largely unknown. The present study has investigated the astrocyte responsiveness to µ-opioid signaling and the regulation of gliotransmission in the nucleus accumbens. Through the combination of calcium imaging and whole-cell patch clamp electrophysiology in brain slices, we have found that µ-opioid receptor activation in astrocytes elevates astrocyte cytoplasmic calcium and stimulates the release of the gliotransmitter glutamate, which evokes slow inward currents through the activation of neuronal N-methyl-D-aspartate (NMDA) receptors. These results indicate the existence of molecular mechanisms underlying opioid-mediated astrocyte-neuron signaling in the nucleus accumbens.


Assuntos
Analgésicos Opioides/farmacologia , Astrócitos/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Animais , Astrócitos/efeitos dos fármacos , Cálcio/metabolismo , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Potenciais da Membrana , Camundongos Endogâmicos C57BL , Naltrexona/farmacologia , Neurônios/efeitos dos fármacos , Receptores Opioides mu/antagonistas & inibidores , Receptores Opioides mu/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...